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MOST IMPORTANT SIYMBOLS

v "nabla" spatial differentiation, dimensions
1/cm

ve = grad 6; (Vv) = divy

[wv] = rot v, (vw)v = (v grad)v

2 2 2 .
A=VE = o 5 + 9 5 + 0 > sign of Laplecian, dimenslons l[c:mz
ox oy oz

v = v(x,y,2,t) velocity vector of fluid particle, cm/sec

p = p(x,y,2 st) pressure determined by convective phencmens,
bar = dyn/cm2

g gravity acceleration vector, g = 981 c'.m/sec2

B=9d 1In p/ae coefficient of change of density with temper-
ature of fluid, 1/deg

1 = d 1n p/BC coefficient of change of density with concen-
tration, cm3/g =

6 = o(x,y,z,t) temperature, °C

v=plp coefficient of kinematic viscosity of fluid,
cmzfsec

x = 7\/pc coefficient of temperature conductivity of
fluid, cm?/sec

D coefficient of diffusion in fluid, cm®/sec

o density of fluid, g/cm

c concentration of admixture, g/cm>

adt = dx dy dz element of volume, cm®
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CHAPTER 1
GENERAT. CHARACTER OF THE INVESTIGATION

1. Definition of Gravitational Convection

Gravitational convection is the term used in hydrodynamics to de-
note the phenomenon that occurs in the field of universal gravitation
in connection with the fact that the different particles of a fluid pos-
gess different densities.l The denser particles sink and the less dense
particles float in the surrounding fluid. We understand."fluid" to be a
liguid that possesses surface tension as well as gases. The hydrodynam- T
ical side of the problem lies in the fact that the particles of the .
fluid do not move in empty space but move among other similar particles
so that each particle in its motion ogcupies only the place of some
other particles it pushes aside. A "particle of fluild" contains within
itself a huge number of molecules. ;

The reason for the differences in denslty usually lies in the dif-
ferences in temperature or camposition, perticularly in the concentra-
tion of the admixbures dissolved in the fluid. In addition to these
most common reasons for the differences in density, other causes may be
present (e.g., electrostriction, thermomagnetic (ref. 3}, and thermo-
electrostatic effects). The most widely studied form of gravitational
convection is the temperature (or heat) convection and for this reason
it is desirable to investigate this phencmenon in more detail. It is
not difficult to relate it with the diffusion (or concentration) form
of convection since the corresponding quantitative expressions reveal —
great similaxrity.

The convection is called free 1f the stresses (including the normal
pressure) to which the fluid is subjected at its boundaries do not per-
form mechanical work, that is, if all the boundaries of the fluild are
stationary. The case where this is not true is termed forced convection.
It corresponds to the action on the fluid of some mechanicel suction
pumping the fluid.

lBesides gravitational convectlon there are the phencmens of elec-
trostatic convection (ref. 1) and magnetic convection (ref. 2) that
arise In the electrostatic and magnetic fields.
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There may also be encountered an intermedlate case where free con-

vectio? is imposed on the forced motion of the pumped fluid (ch. 5, :
sec. 4). -

The present report concerns itself almost exclusively with free

convection.

2. M. V. Lomonosov -~ Initiator of Sclentific Problem

T82%

of Thermal Gravitational Convection

The first investigator to epproach scientifically the phenomens of
heat convection in nature was the academician M. V. Lomonosov, who first
correctly explained the fundamental mechanism of meteorologlcal phencm-
ena. In his work "On Atmospheric Phenomena Arising from Electricel
Forces™ (1753), he discussed the meteorclogical phenomens in detail,
adduced proofs of the correctness of his explanations, and urgentiy ad-
vocated the scientific views he had worked out.

After first pointing out the importance of the prediction of the
wegther for human activities, and the difficulties and unpopularity of
such predictions, Lomonosov continues, "I have often wondered when I ob-
served that in the winter time after the thawing of the air in which
snow had melted terrible frosts suddenly set in, which, after a few
hours, made the mercury in a thermometer drop from 3° or 5° above freez-
ing2 to 30° below freezing and at the same time occupy a space of more
than 100 miles. Camparing these with the winters of 1709 and 1740 which
were fierce almost over the entire Eurcopean continent, I wondered even
more and very gresatly desired to seek the ceuse of such a sharp change.
Most remarkable of all was the fact that thaws almost always occur with
air motion and a strong tendency of the weather to cloudiness, while on
%he contragy, a frost beging to show its rigor after the sky has cleared”

pp. 13-14).

L

L}

!

Lomonosov also noted that flulds are more heat conductive than
s0lid bodies when heat is conducted upwerds: "In agreement with sound
considerations is the fact that the fluldity of sea water and the degree
of temperasture above or near the freezing point is maintasined for a
large extent of the sea and also for the subterranean heat which passes
through the sea bottom. Thus, the open seas that are free from ice im-
part more hest to the winter air than mother earth locked in a frozen
?hell ?nd covered with deep snows which bar the underground heat"

p. 15).

2The author refers to a 150° temperature scale (lnstead of the 100°
Celsius scale). _ _ _
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Lomonosov asked further, "What is the reason that sea winds stop
blowing?" And he answered: "In giving this question my attention I ob-
served a difference of heat and density between the lower air and that
which moves upward. That the heat is greater below than sbove, or
speaking generally, in the winter a stronger cold exists sbove the clouds
than below is a Judgment obtained by an investigation srtificially per-
formed and confirmed by agreement with the atmospheric phenomenon. The
upper part of the atmosphere itself is much less heated by the sun than
the lower part. Moreover, the winter surface heated by the sun and the
rays reflected by it have a greater effect in the lower atmosphere than
in the middle or upper atmosphere. The summer hail and the frozen sum-
mits of high mounteins reveal the truth of this to the eyes and impress
on us the fact that in the midst of summer there is always & rigorous
winter not very high above our hesads.”

Referring to geodetists, who, in the Peruvian mounbtains “measured
the earth's sphere and suffered from frosts and exuded perspiration,”
Lamonosov continues, "By a prolonged and painstaking skill and an accur-
ate computation, it has been shown that at a known and definite height
of the entire atmosphere there reigns a rigorous and continual frost
that covers the summits of high mountains with a perpetusl snow. If
this extends continuously under the very equator, it is easy to conclude
how great the force of the frost is in ocur climate near the same summit.”

Having remarked on the phenomenon of hail, Lomonosov continues,
"However, this in truth occurs and clesrly shows the terrible frost pro-
duced st altitude in the snow nucleus of the falling hail." Remarking
that in Yeniseisk frosts of 131° below freezing were observed (-87.5° C),
aessuming that the same temperature prevails at the height of 1 verst
(1.0668 km), and computing the corresponding densities of the air,
Lomonosov arrived at the following conclusion: "Therefore, it is clear
that the lower atmosphere is often less dense and proportionately lighter
than the upper. This state of the air, which sould be studied further,
is sufficliently evident from Aercmetic rules and is also confirmed by
examples. I have explained first that of all the motion of the air in
mine pits arises from a different density, where at 50 or less sajenes
(1 sajene = 2.134 meters) its flow arises from these causes. Moreover,
even in houses in winter, the warm air near the stove rises and, the
cool air near the windows descends, a phenomenon which can easily be
seen by observing the motion of smoke. Therefore, to a height,
which extends over 100 or 200 sajenes, the air of the lower weight
cpposes the natural laws. It descends and graduslly mixes with the
lower air casting a severe frost over us. It descends without appreci-
gble motion since in one second it hardly moves several inches, and in
two hours it drops 100 or 200 sajenes contending with the currents that
rise to meet it." As an experimental proof of this hypothesls, Lomonosov
refers to the observation of fumes issulng from pipes; but still more
profound is the following remark: YA second effect of these motions is
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the clearness of the sky, for although here the density of the air is
largely a casual factor, by their rising and sinking, the clouds spread
over a large area, then thin out and dissppear. Thus, the sudden winter
frosts arise by the lowering of the middle atmosphere. Therefore, the
fact that it begins without any motion of the wind ceases 4o be remark-
able. Such & drop of the middle atmosphere into_the lower must occur in
the summer, & circumstance which the disposition of the air tending to-
ward this drop confirms sufficiently. . Let us assume that the air, in a
state to produce hall in summer, is at 8 helght of 300 sajenes and com-
tains within it a temperature of 50° below freezing (whlch in all prob~
ability may be affirmed); at which time the air in the lower atmosphere
near the ground is heated to 40° or 50° above the previously mentioned

freezing point: Then, in accordance with my experiments and computations,

the density of the upper air as compared with the lower air is of the
ratio 6:5; but by the pressure of the upper air, the lower air is com-
pressed and becomes more dense by about one-tenth part. In this state,
by the immovable laws of nature, the upper part of the atmosphere should
descend deep enough into the lower part so when mixed with the warm

air, 1t will come to equilibrium. This flow of rising and descending
eir must occur as often as the welght of the upper atmosphere exceeds
the weight of the lower; in addition, the lower air must meet the upper
and contend with the upper at a different height and dlfferent tendency
in proportion to the height and difference in heat and density. Finally,
this will occur more easlly when, by the strong summer heat, the surface
of the earth is heated, and the air lying above the earth warms and ex-
pands at the same time that an exceeding great cold above the clouds con-
denses the middle part of the atmosphere.’

A little further on Lomonosov continues, "But. as soon as the lower
air expands by the force of the heat and becomes more rare, the cold and
dense part of the atmosphere must descend downward and the lower air
rise upward in its place. I shall try to present fthe phenomena of these
interchanges as briefly as possible to your mental eyes, as far as may
be understood from my words and as you yourselves have seen and can re-
member. When the upper atmosphere of a large weight descends to the
bottom, 1t does not spread everywhere at the same horizontal_plane, but
for different clrcumstances of the solar rays, according to the position
of the clouds and the unevenness of the ground surface, 1t produces a
different rarefaction in the air. And so it descends in places such as
the shade of a mountain, or a bigh building, or a thick cloud where the
air is thicker and heavier. It rises upwards where the slopé of a moun-
tain is turned to the motion of the sun, or through cloud openings, and
is heated by the impinging rays. For this reason, when the thunder
clouds ascend before the rain, a large part of the lower clouds move up-
ward and downward like hille; fleecy vapors spread toward the esrth and
eddying whirls howl; dark abysses open; and above these phenomens the .
clear sky is covered with a dark blue color. All these circumstances
then show, that when a part of the middle atmosphere filled with hot

T82%
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vepors descends and covers the clearness of the sky with a blue darkness,
penetrates the lower clouds with its uneven descent, passes through these,
and contends with the encountering air" (p. 22).

After several lines Lomonosov again points out, "The more the lower
part of the atmosphere is heated, the more readily the upper part lowers
itself into it. Whichever part feels less heat rarifies to a lesser de-
gree. This can conveniently be ascertained from the rise of the mercury
in a thermometer and the lowering of the atmospheric pressure. When the
solar rays intersect through the clouds, the air cools in the shade of .
the clouds and must warm up. For this reason, it would be necéssary for
the air to move fraom the edges of the shade to its center. A similar
action should follow from the growth of falling rain drops because the
humid vapors and the water particles unite and heat the large quantities
of air in them. However, such motion of the air toward the center of
the shade hardly ever occurs, but I do not doubt that the contrary has
been the case as observed by all of you. For the advancing clouds .
charged with lightening not only are preceeded by rushing motions but also,
passing by, glve forth strong winds to the side, leaving behind a still-
ness over a large area. Where does this stream of air arise? It arisés
from the pressure of the upper atmosphere, which in compressing the
lower is broken up on =ll sides and strives particularly toward that
side where it encounters the least resistance" (p. 24).

Turning to the effect of the local topogrsphy Lomonosov states fur-
ther, "The air in mountainous localities seldom is in equilibrium, be-
cause 1t must rise in places facing the sun, descend in the shade, and
thereby more easlly draw to itself a part of the cold and heavy upper
atmosphere which accelerates its motion and moves it nearer to the
ground. By the agreement of so large a number of changes and phenomena,
I hope to have shown that my theory does not rest on a weak foundation.”

After several pages, Lomonosov returns to the subject of convection.
"After the setting of the sun, the lower atmosphere cools more rspidly
than the earth's surfece, which is saturated with the moisture of vegeta-
tion. Through this, the cold air, on coming in contact with the still
warm earth, is heated, expands, becomes lighter, and rises until, on be-
ing cooled, it comes to equilibrium" (pp. 39-40).

When he csme forward with this exhaustive explanation of convective
meteorological phencmens, it was naturaelly impossible for Lomonosov not
to encounter oppositions and objections. For this reason, he found it
necessary to give in addition “proper explanations on the matter of elec-
trical atmospheric phenomena” (p. 65). The most important and colorful
of these explanations is the Ffirst: "The subject of the descent and as-
cent of the atmosphere has been briefly touched upon by Mr. Franklin in
his letters. However, that I owe nothing to him in my theory as to the
cause of an electrical force in the air is clear from the following
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paragraphs: (1) concerning the descent of the upper air, I had already
given it thought and discussed it seversl years ago. I saw the Franklin
papers for the first time when my discourse was almost completed, in
which matter I refer to my colleagues; (2) the descent of the upper
atmosphere was proposed by Franklin in a report of only a few words. I
deduced my theory from the sudden setting in of.great frosts, that is,
on the basls of clrcumstances that are unknown in Philadelphis, where
Franklin lives; (3) I proved in a memorandum that the upper air is not
only able, but at times must descend into the lower air; and (4) on this
basis I have explained many phenomena connected with the thundering
force, of which no trace is mentioned by Franklin. All this is added
here not because I want to put myself above him, but is added in ordex
to follow the wish of my colleagues, who demanded that I subjoin my
Justification" (p. 65).

The theory of M. V. Lomonosov is based on carefully worked tests:
IV. "On Multiple Causes,"” page 17, line 31. The tests for determining
the different densitles of the air at different degrees of heat, for all
otherwise equal conditlons, were studied by me in manometric tubes of
equal width without bulbs and without using other vessels. Although
the different quantity of vapors changed the proportion of the expansion,
the average was found to be correct. That is, air 50° below freezing
as compared with alr which is warm at the aforementioned freezing point
is in volume ratio 10:11, but as compared with air at 50° above the
freezing, the warm alr is in the ratio of 10:12 or 5:6. Hence, to 4°
above the freezing there corresponds a volume of-air of 554, and to 131°
below freezing, there corresponds a volume of air of 419. For this rea-
son, the volume of the former to that of the latter will be 554:419, or
almost 4:3. That is, the air of the lower atmosphere will be lighter
than the other by a one-fourth part. V. "My Explanation," page 18, line
8. "In addition to the motion of the air which occurs in mines, ex-
plained in the new Commentaries in the first volume, there are natural
proofs of the ascending and descending of air in the free atmosphere”
(p. 66). Further on, Lomonosov presents, explains, and illustrates the
case of diurnal winds on the Waldstatt Sea in the Alps. He completed
this example with the words: '"Moreover, in sultry summer days the
ground surface apparently swells because the rising warm air mixes with
the descending cold air" (p. 67). (See also ch. 13.)

After a new computation of the coefficient of expansion of the air
in "Explanstion VI," Lomonosov in "Explanation VII" gives & figure which
leaves no doubt that he discovered, understood, and quite correctly ex-
plalned the idea of convection.

In ancther of hils works, Lomonosov again returns to the convective
phencmena: "On the Free Motion of Air Observed in Mines from the First
Volume of New Commentaries,” 1763, (ref. 4). Here he describes and ex-
plains two cases of convection that take place in mines if the followlng

182%



4484,

NACA TM 1407 7

conditions are observed: (1) the mine must have two openings on the
bottam surface situated at different heights above the sea level, and
(2) the temperature of the free air must differ from the temperature of
the ground layers cut through by the mine (ch. 5, sec. 4).

The excerpts quoted previocusly show that M. V. Loamonosov was the
first person to study carefully the phenomenon of heat convection as a
result of many years of observation, to explain correctly this phendm:
enon, to lay the foundations of meteorological phenomens, and to put
forth much effort in popularizing the laws revealed by him. e

These facts imposed upon Soviet physicists thelr duty to continue
unceasingly the investigations of Lomonosov and, with modern means, to
study the phenomenon of gravitational convection, and to extend the
scope of the problems that it embraces.

3. External and Internal Problems

Among all the possible cases of thermal gravitational convection
the cases that have been subjected to the greatest engineering and te&h-
nical Investigation are those where the hester used for this purpose
had much smaller dimensions than those of the vessel used to contain the
fiuid. The study of these cases was primarlily conditioned by the prac-
tical demands of steam boiler plants. The combination of these condi-
tions is included under the general concept of the "external problem of
heat -convection.” '

The contrary cases, where the dimensions of the heater or the
cooler are comparable with the dimensions of the vessel containing the
fluid, are combined under the general concept of the "internal problem."
Of these cases, the one subjected to the most detailled engineering and
technical investigation is the case of the transfer of heat from one
solid body to another through & thin layer of fluid (ref. 5, p. 86), and
frc? the wall of a pipe to the fluid moving within it (ref. 5, p. 87 and
i

The technical character of these investigations is conditioned by
the aim that they pursue, namely, to give an over-all estimate of the
quantity of heat transferred by the whole convective process rather than
going into the details of the motion of the fluid particles and the dis-
tribution of their temperatures. The source for these investigations is
frequent and diversified tests, and the resulits are generalized by the
methods of the theory of similarity or theory of models.

With this engineering approach to the phencmens of gravitational

* convection, the physico-mathemetical approach is of great significanceQ

In the latter approach, the hydrodynemic side of the process and the
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tempersture distribution are studied In detall. The investigation is
conducted both by experimentel methods and by the mathematical devices
of claasical hydrodynamics.

The two most important experimental methods are the hydrodynamical
methode of recording the motion of light-scattering particles introduced
into the transparent fluild, and the optical nmethods based ¢n the depend-
ence of the index of refraction of a transparent fluld on its density
(temperature, concentration). The value of these methods depends on the
fact that with a correct test set-up neither the introduced particles
nor the light rays appreciably distort the phencmenon under investiga-
tion. Of lesser value are the thermal methods whose application is
attended with the flow distortlng behavior of the fixed thermometers in
the fluid (thermocouples or resistance thermcmeters).

The mathematical devices of classical hyldrodynamics consist of
skillful methods for solving the camplicated hydrodynamic equations of
heat convection. Of these, the first method used was that—of Raleigh
which reduces to the finding of solutions that are periodlc in space
(ref. 8). This method was applied by numerous investigators (ref. 7)
who were primarily guided by thelr aim to solve certain problems of
meteorology. There are also & few known successful attempts to inves-
tigate mathematically problems of the external type (e.g.,_ref. 8).

The difficulties, arising in the mathemstical treatment for solving the
problem, have attracted great mathematiclans to whom special technical
problems were foreign. For this reason, the analysis was ususlly
limited to the mechanical phase of the phencmenon and only iIn rare cases
did it touch its thermal phase.

Thus, there arises the urgent need of investligating whether there
are any cases of an accurate solution of the equations of thermal con-
vection and the associated question of the methods of solving these
equations approximately. The investigation itself should not be limited
to the mechanical side of the problem but must also give a clear account
of its thermal (or concentrational) aspect. .

4, Practical Value of Chosen Case

An exact solution of the equations of thermal convection msy be ob-
tained for a case that has great practical value. This is the case of
the thermal convection 1n a cylindrical vertical cavity heated from be-
low or on a side. The practical value of this case is determined by the
following circumstances:

(l) The heat which is propagated in the earth's core from the
pyrosphere to the surface passes at some places through cavities con-
taining liquids or gases. In these, a convective motion may arise so

T82%
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that a certain amount of heat is transferred upwards and is added to the
heat transferred by the molecular thermal conduttivity. The distribu-
tion of the temperatures both within the cavity and in the surrounding
mines depends on the form and intensity of the convective motion. Prac-
tically the most important case of such a cavity is a vertically drillied
well. Geologists often judge the distribution of the temperatures with-
in the layers of the earth's core by the distribution of the temperature
in the fluids £illing such wells. However, the temperature of the fluid
in the well may actually be determined not only by the temperature of
the neighboring layers but also by the convective motion in the fluid.

A consciously critical approach to the results of the measurements
sharpens the most important geothermal concepts (ref. 9).

(2) Meny plants make use of chemical processes in liquids and gases
accompanied by changes of temperature or concentration. Reservoirs hav-
ing the form of tanks or columns are often used. Under certain condi-
tions convective phenomena may be excited in these containers either
spontaneously or by artificial means. Sometimes these phenomena are de-
sirable; at other times they are injuriocus. In any case, their conscious
control improves or acceleratées the production. ’

(3) In the casting of large articles the process of cooling the
casting does not occur instantly. The cooling of a casting through the
wall of the casting mold may bring about convection phencmens in the
casting. The convection camplicates the process of cooling and solid-
ification and may serve as a cause of desirable or harmful forms of
shrinkage phenomena. A conscious control of the convective processes
opens up a way to reduce the spollage in casting. The characteristic
feature of convective processes here is their steady regime. Here also
belon§ the cases of the seasonzl freezing of water tanks (of certain
forms ).

(4) Production installations often have the form of heated and
ventilated pits. The conditioning of the air in these chambers, intro-
duced for the purposes of professional hygiene, cannot be correctly de-
signed if the phenomens of thermal convection and diffusion are not con-
sidered. 1In this book the case of convection in & cylindrical channel
is investigated by physico-mathemstical methods and conteins brief con-
clusions regarding englneering and technical applications.
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CHAPTER 2 . .. -
FUNDAMENTAL EQUATIONS OF GRAVITATIONAL CONVECTION
1. Physical Sense of Different Terms of Each Equéﬁion

The process of gravitational convection 1s described by the follow-
ing equations (ref. 1):

P4 (W= -y g(po + BiO) +vAY (2.1)
6+ VXVO= Af (2.2)
C + v X VC = DAC (2.3)
6+ V(pv) = 0 (2.4)

The first of these equations was obtained from the Navier-Stokes
equation. The physical meaning of each term of this equation may be
ascertained if the equation is multiplied by the mass of an element of
volume ("perticle") of the fluid pdT; where it is useful to bear in
mind that in hydrodynamics, two methods of describing the motion of a
fluid are applied. The so-called Lagrange method studies the paths of
the different individual particles of the fluld during the entire proc-
ess. The Euler method congiders the distribution of the velocities in
the entire volume of the fluid at a given instant.

The term ¥ represents the acceleration of a particle of volume
dt at a given point of space at a given instant. It may be called the
Euler acceleration. In connection with the fact that the expression
pvdT enters in the equation of the second law of Newton, this term of
the Navier-Stokes equation may be called the Newtonian term.

The expression [¥WV]v = % W2 - [v[W]] in steady flow represents

the acceleration of a material particle of mass pdt moving along a
given trajectory. It may be called the Lagrange acceleration. The cam-

ponents % w2 and - [v[W]] are analogous to the tangential and normal
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accelerations of the particle. The tangential component axrises in the
nonuniforn motion of the material particle along its path. The normal
component arises in the motion of the point along & curvilinear path.
The term [W]v, in particular, drops out in the case where all the par-
ticles of the fluid move rectilinearly, uniformly, and along parallel
paths. The parallel requirement is added because, for exsmple, in a
radial spreading of an incampressible fluid from a single source the
motion of all the particles, although rectilinear, is not uniform: the
farther away from the source the less the velocity.

In comnection with the fact that the expression % vzpdx enters in
the Bernoulli hydrodynemic equation, the expression %1VN2 may be called
the Bernoulli force.

The entire left side of equation (2.1) may be called the inertis
part.

The expression -Vpdt represents the force of the hydrostatic
pressure and mey be called the Pascal force.

If the fluid does not everywhere have the same temperature 6 and
concentration C of the additive mixed with it, its density will be dif-
ferent at various points and will be given by p = po(l + B8 + BiC)
where ppo denotes the density of the solvent for 6 = 0° amd C = O,

B denotes the temperature coefficient of the density and B dJdenoctes
the concentratlion coefficient of the density. Thus the expression

grglBe + BC) (2.5)

represents the relative weight of a fluid particle dt. We do not con-
sider here the phenomens of thermodiffusion. This expression may he
called the Archimedes force. It determines the gravitational character
of the phencomenon under consideration.

The expression vpdtAv represents the force of viscous friction
acting on the particle dt. This expression may be called the
Poiseullle force.

From this analysis it is seen that equation (2.1) represents a sum-
mary expression of & number of elementary generally known physical laws
referring to one gram of fluid and holds true for any pasrticle of fluid.

This equation is not entirely accurate in the following respects.
Actually, the density of the fluid in the Archimedes force is given by
the more complicated expression as follows:
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_ dp 1 3% o op 13% 2
p-p0+g-6-6+§—a-;2-e+ +&'C+§ggzc+ +
%o R - - '
mQC'f' +§P+ (2-6)
Of this expression, equation (2.1) uses only the first approximation
1,90 _
EXEé'-B
(2.7)

1.%_p
o X 3¢ 1

Moreover, bearing in mind that B6, B;C are usually not large in
comparison with unity, p may be set equal to pg.

The equation of heat conduction (2.2) is called the Fourier-
Kirchhoff equation. If this equation is multiplied by pcdt, the first
term represents the quantity of heat expended per second for heating an
element of volume, and the second term represents the quantity of heat
carried away by convection from this element of -volume. On the right
side the expression cXxAfpdt £ ANABAT represents the quantity of heat
flowing up to an element of volume by heat conduction of the surround-
ing particles of fluld. Thus, equation (2.2) expresses the law of con-
servation of energy. The coefficient =« 1s called the coefficient of
temperature conductivity (thermal diffusivity).

The equation of diffusion (2.3) is sometimes called the Fick equa-
tion and formally agrees with equation (2.2). The meaning of the dif-
ferent terms is analogous to the meanings of the corresponding terms of
equation (2.2). As a whole, equation (2.3) expresses the physical law
of the conservation of matter (admixture). The coefficient D 1is called
the diffusion coefficient.

The equation (2.4) is called the continuity equation, and likewlise
expresses the law of the conservation of matter (that of the basic fluid
or solvent instead of the admixtures).

Equations (2.2), (2.3), and (2.4) accurately express the elementary

physical laws they represent. Equations (2.1) to (2.4) are true both
for leminar and turbulent motions of the fluid.

2. Mathematical Character of Equations

In equations (2.1) to (2.4), it is assumed that we are dealing with
a fluid whose physical properties, (i.e., the parameters) are known.

T82%
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The unknowns in these equations are as follows: the velocity v, the
pressure P, the temperature 6, and the concentration €, altogether
four functions, one of which is vectorial. For thelr determination, we
have a precisely sufficient number of simulteneous equations, cone of
which is vectorial. The arguments of these functions are the coordi-
nates and time. Equations (2.1), (2.2), end (2.3) are partial differ-
ential equations of the second order (through the Laplacian A); equa-
tion (2.4) is of the first order. Equations (2.1) to (2.4) are homo-
geneous; they do not contain free terms. .

All of these equations are nonlinear. The nonlinearity is recog-
nized both in the structure of the equations themselves and in the non-
linear properties of the physical parameters of the fluid.

Actually, all the parameters of the fluid are functions of the tem-
perature. Generally, the viscosity v 1is most strongly dependent on
the tempersture and also on the concentration of certain admixtures. To
a lesser degree, the parameters of the fluid genersally depend on the
pressure pP.

The nonlinear structure of the equations is reflected by the follow-
ing terms: the Lagrange term (eq. (2.1)), and the convective terms
(eq. (2.2)) and (2.3), and the entire eq. (2.4)). All nonlinear prop-
erties of equations (2.1) to (2.4) are comnected with their coordinate
terms; the terms depending on the time (¥ and &) are linear.

Methods for solving nonlinear differential equations giving an
accurate solution in a finite number of operations are unknown. It is
this difficulty which explains why the physico-mathematical side of the
phenomenon has been relatively and moderately investigated.

One of the properties of a nonlinear homogeneous eduation is that
if we have found two solutions of such equation by some method, the sum
of these solutlions will not solve this equation. The fundamental prop-
erty of linear homogenecus equations is the converse of this property
which reflects the physical principle of superposition. Hence, it is
still necessary to defer attempts at an accurate solution of equations
(2.1) to (2.4) in their general and rigid form.

It is necessary, in the first place, to limit oneself to those
cases where it is possible to assume that the parameters of the f£luid
either do not depend on the temperature and pressure or depend on them
to such a slight degree that the general character of the phenomenon is
undisturbed by this dependence. This is called parametric linearization
of the egquations. In this case, the problem may be approximately solved
for the entire setup with Improvements in the accuracy at different
places of the setup in correspondence with the temperature and pressure
there obtained. In general, this restriction is not too troublescme
(except ref 2).
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In the second place, 1t is necessary to investigate carefully those
cases where it is possible to remove the nonlinearity from the structure
of the equations, that is, to bring asbout their structural linearization.

The previously mentioned difficulties of solutilion of the nonlinear
equations led to the rametrical linearization of equation (2.4) as
early as 1903 (ref. 3?? It was established that, within the range of
the fundamental propertlies of convective phenomena, 1t is possible to
assume Vp = O in the systems of (2.1) to (2.4) everywhere except for
the Archimedean term in equation (2.1). As a result, equation (2.4)
becomes

p+Vpv) =p+ VO XV +pW =0
and assumes the form
W =0 (2.8)

As mentioned previocusly, the structural linearization of equation
(2.1) is brought about when the ILagrange acceleration is equal to zero
and the paths of the fluid particles (the "lines of flow") form a per-
allel bundle. If we take the z-axis of a Cartesian system of coordin-
ates parallel to this bundle, we have

vE vy E V(J‘:Jl‘)")_T
v, E 0
x_ } (2.9)
vy =0
v
Z=-° J

Under the conditlion of the structural linearization of equation
(2.1), equations (2.2) and (2.3) may be "structurally linearized" if
the z-component of the temperature and concentration gradients are con-
stant, that is,

oz

26 (2.10)
—_——= 0

dz2

Experience shows (ch. 10), that this is the typical case.
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In view of the fact that the majority of the tests have been con-
ducted with heat convection, and by assuming that in industry also heat
problems are more important than those of diffusion, end also by taking
into account the symmetry of the temperature and diffusion in the equa-
tions, further study will consider only temperature. Wherever nec&€ssary,
the diffusion problems may be investigeted along the same pattern. The
phenomens of thermodiffusive convection require independent investigation.
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CHAPTER 3

"FUNDAMENTAL" (LINEARIZED) EQUATIONS OF
GRAVITATIONAL CONVECTION

1l. Form of "Pundsmental’ Equations

Bearing in mind the parametric and structural linesrilzation of the
initiel equations carried out in the preceding paragraphs and confilning
ourselves to thermsl convectlon we obtaein, for the steady state, the fol-
flowlng system of linear homogeneous equations

l .
O=--5X%+gcos aBd + VAv (3.1)
I SV
0=-=X 35 + g sin apé (3.2)
Av = A9 (3.3)
ov _
5= (3.4)

Account was taken of relation (2.9) in virtue of which all these
equations are scalar and there has been put

g% =4 (3.5)

The YZ plane has been taken through the gravitational acceleration
vector g which forms the angle o (fig. 1) with the Z-axis. It is un-
derstood that equations (3.1) to (3.4) describe only the laminar motion
of the fluid.
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2. Remarks on the Experimental and Mathemstical Significance
of "Fundamental" Fquations

Much effort has been expended in proving experimentally the admissi-
bllity of the basic assumptions which underlie the setting up of a sys-"
tem of equations (3.1) to (3.4)(chs. 10 and 13). As a result, it has
been found that these assumptions are actually typicel for a wide range
of experimentally produced thermsl convection phenomena. At the same
time, the linearity (and homogeneity) of these equations makes possible
thelr elementary solution in closed form. We thus f£ind, in this sytem
of equations, the key to the detailed physico-mathematical investigation
of a certain class of experimentally producible phencmens. For this rea-
son, the system (3.1) to (3.4), its solutions, and those conditions which
determine the occurrence of this case will be termed "fundamental” in the
followlng paragraphs.

This term is further Justified by the following considerations. The
degree of accuracy of an experimental check of any theoretical assump-
tione can never be considered perfect. In any experiment small devia-
tions will always exist from the ideal case that is described by the
equations. It is possible to distinguish a wide group of experimentally
produced phenomens in which the ideal situation will form the principal
and essentlal nucleus while the previously mentloned small phencmensa
will play a negligibly small part. It is this group which serves as the
proof of the correctness of the basic assumptions. But, in addition,

a second still wlder group of phenomens can be distinguished in which
these small deviations will no longer be negligible owing ‘to their in-
sufficient smaliness. These, however, can be mathematically taken into
account as nonlinear corrections to the solution of the linearized
system (3.1) to (3.4).

Thus, equations (3.1) to (3.4) not only play an independent part in
giving an exact solutlion of the problems of experimentally produced
phenamens but also play the very important auxilisry part of providing
a basis for the mathematical solution of not strictly lineaxr problems
by the method of successive approximetions (ch. 15).

3. Case of Vertical Channel

Bearing in mind that the experimental verification of those cases
for which sin o« is not small encounters great difficulties (ch. 17),
we assume that the channel is verticel, the Z-axis collinesxr with the
acceleration of gravity vector g, and the angle o = x. Then

- [egx]l =0
(3.8)

cos o = - 1
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We likewise assume, for the present, that Jp/dz = O (ch. 5, sec. 4).
The scalar equations (3.1) to (3.4) then become
- g6 + VAV = O (3.7)
Av - %8 = 0 h (3.8)
Eliminating from these equations either 8 or v by applyling the
Laplace operator to one equation, we obtain quite identical equations

in v or 6, for example: =

gRAV - VMV = O

or
My - X5 = 0 (3.9)
where
4 _ gPA .
k* = 8= (3.10)

The process of elimingtion was possible because of the commutativity
of the operations of multiplication and of forming the Laplacian For
exmaple, in eliminating 6, it was assumed that

gpas = A(gpe) (3.11)

The result does not deperd on whether the function of the coordinstes €
is multiplied by the constant mumber gB, and then from the product a
rew function, the Laplacian A, is formed, or conversely, whether the
Leplacian of 6 is formed first and the result is then multiplied by
the constant number gf. Xquation (3 9) is a linear homogeneous incom-
plete bibarmonic equation (refs 1 and 2) with constant coefficients
(within the assumed limits). By definition, the symbols AA has the
following meaning: .

My = A(Av) = div grad div grad v
v dty - iy
=wv(v{Ewv)}) = viv = + 2 + (3.12)
{ } dx 4 } BXZBy_Z 4
From the system (3.7) we obtain
g = EE Av - (3'15)

If the system (3.7) to (3.8) is solved for 6, we obtain, from (3.8),

v=£—A9 - (3.14)
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4. Formation of Components of Harmonlc Equations

Equation (3.9) is customarily solved by the following symbol method
(ref. 3, p. 197). We assume

0= (A - ¥2)(A + KB)v = My - KB(Av) + A(kPv) - ki = Mv - kv
(3.15)

Because of the commutative property
K2 (av) = A(kev) (3.16)

Hence, the repeated equation (3.15) is true. But expressions (3.15) can
be equal to zero only 1f st least one of the following equations is true:

2

2
(A-X')vy =av -k'v; =0
.2 (3.17)
ANi =k vy
2 -
(A + k%)v, = &v, + k2v2 =0
(3.18)

Avg = - kZvg

Since equation (3.9) is linear (and homogeneous), its most general solu-
tion will be any linear combination of solutions of equations (3.17) and
(3.18)(satisfying the boundary conditions discussed in the following

example):

v = vy + vy = v(x,y) (3.19)

There is then obtained from equations (3.5) and (3.13) 6 = 6(x,y) + Az,
nsmely,

8 - Az = 67 + 63 = é% CANl +-AN2) = é% (k?vl - kZVZ) = E%E (Vl - Vz)

(3.20)

Since equations (3.17) and (3.18) are each of the second order,
there enter altogether, in the final solution, four arbitrary constants
determined from the boundsry conditions.
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5. General Properties of Solutions of "Fundemental"
Equations of Gravitational Convection

Even before discussing the guestion of the boundary conditions, a
number of important general conclusions can be drawn from the form of
the solutions (3.19) and (3.20).

(1) The total volume of the fluid flowing upward in the plane
z = 0 through the area S bounded by the contour L 1in time + 1s
equal to (fig. 2)

V= vt dx 8y = t (vy + vg)ax ay )
>
Bvl aVz
= ——-\j()/\@ﬁvl - Avplax dy = :?g‘(s—— 8—%)
-~
(3.21)

where the Ostrogradsky-Green theorem was used. The sign B/Bn denotes
differentiation along the normal to the contour L, d4dI denotes the

differential arc of the contour, andL¢? denotes integration over the
closed contour.

(2) The total flow of heat due to molecular thermal conductivity
(there is no other convective-heat conduction in the direction perpen-
dicular to the z-axis) through the lateral surface of a cylinder of
height h with base §, bounded by the contour L, over a time t is

equal to
ygxgﬁhdz 7\11‘515‘g%(ej_ﬂaz)dzT
L : L .
_ vk’ vy 9% .
T gB d " on
L

4 .
tA\hvk
_V=h.C‘.A

2B PcAV ‘

Qt

-~

(3.22)
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If we assume that the motion of the fluid is directed by the walls
of the vertical cylindrical channel having the cross section 8, then
it is seen from equation (3.22) that the flow of heat passing from the
channel walls into the fluid, under the assumptions made, is propor-
tional to the total quantity of fluid flowing through the section of
the channel. If at certain points of the cross section the fluid flows
upward and at other points downward, then it may be found that the
total quantity of fluid passing through will be equal to zero ("closed”
channel, pure natural convection). In this case, at certain points of
the perimeter of the channel walls the heat may pass from the walls to
the fluld end at other points from the fiuid to the walls, but the .
total general flow of heat will likewise be equal to zero. With such a
natural convective flow having a constant gradient and constant velocity
over the height (but varisble over the cross .section), the fluid does
not heat or cool all the channel walls.

If a certain distance along the channel an over-all transfer of
heat occurs from the fluid to the walls or conversely, then one of the
assunptions made dxrops out. For example, it 1s possible that an srti-
ficlal pumping of the fluid occurs through the channel, and the actual
motion of the fluld then represents the superposition of forced and
free convection (ch. 5, sec. 4). In this case, equations (3.1) to (3.4)
cease to be linear. Or, it may be that an axial gradient exists so
that Ov/dz # O (i.e., the transverse components of the velocity are
not zero (eq. (2.9)). In this case, the linear description of the proc-
ess is an inaccurate approximation, in some cases, admissible (ch. 10),
and in other cases requiring essential corrections (ch. 15).

(3) The totel flow of heat carried upward by convection in time t
through the area S 1in the plene =z = 0 is given by

Qt vt pc 6 dx dy T

p ct (vq + vz)(el + 85)dx dy

(3.23)
pc’cvk2 ?

eB

(v + va)(vy - v2)dx dy

8

pvet ./g%i (vi - v)ax ay
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To this convective heat flow it 1s necessary to add the molecular heat

flow

Qt = - MSt

6. Form of Solution of Biharmonic Equation

in Cylindrical Functions

(3.24)

The general solution of the biharmonic equations (3.9), (3.15),
(3.17), and (3.18) has been worked out in great detail in terms of cyl-

indrical functions. If we set

X

T cos P

y=xrslin o

12 = x2 + y2

-

tgp = L 3

then (ref. 3, p. 200 and following)
Bzvl Bzvl azvl

1
Avy = + = t I X5E + X—s—=kv
axz ayz arz xr r rz p2 1

Setting
v = vo(r) X cos(np + vq)
we obtain from equation (3.26):

2
aVO

Brz

OV, 2
_..9_—_- E’—.]-kz 'V'O
dr rZ

+ I x
Y

(3.25)}

(3.26)

(3.27)

(3.28)

A solution of the last (linear) equation is given by any cylindrical
function F, (or a linear combination of them) of order n of the argu-
ment (1kr) satisfying the boundary conditions, which will be considered
later in this report. The solution of equation (3.26) will then be

Fn(ikr)cos(nm +71q)
n=0

(3.29)
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In the light of the last transformation 1t is useful for what follows to
give the following simplified characterization of cylindrical functions.
A cylindrical function is & function of the coardinates r and ¢, for
which the operatlon A, by equation (3.26), is equivalent to multiplica-
t%on by k2 Cylindrical functions have been well tebulated (refs. 4 to
6

The choice of the c¢ylindrical functions themselves and their coef-
ficients in linesr combinations must be made by considering the boundary
conditions.

In contrast to many other cases of the application of cylindrical
functions for the solution of physical problems, in this case all func-
tions entering equation (3 29) are characterized by the same value of
the parameter k. It is determined in accordance with eqpatlon (3. 10)
by certain unitary parsmeters of the same Fluid in which there exists
a single vertical temperature gradient A.

By analogy with equations (3.26), (3.28), and (3.29) for equation
(3.18), we find in place of equation (3.29)

N . I,
n=
Considering equation (3.20), we obtain for the temperature
0 - Az = Y2 F ) )
- Az = = n(ikr)cos(ng + vy} - By(- kr)cos(np + 13)] (3-31
&= }

It is useful to have in view the following formuls which permits
the transition from the higher to the lower orders of the cylindrical
functions, which are particulerly well tabulsted, so that ’

Fo(x) = nx: L Fpo1(x) - Fp_o(x) (3.32)

Of these particulsrly well tabulated functions, it is convenient: to use

the Bessel functions J and the Neumann functions Nh.
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CHAPTER 4

SOLUTICON OF PROBLEMS OF THERMAL GRAVITATIONAL

CONVECTION

1. General Boundary Condlitions

For all thermal problems investigated, referring to the convection
of a fluid within a cylindrical channel, the following general boundary
conditions are characterilstic:

(1) Within the channel of cross section S, bounded b& the contour
L and near the surface 2z = 0, the velocities and temperatures are fi-
nite, continuous and single-velued with the required number of

derivatives.

(2) The total quantity is given of fluid V passing through the
channel. For example, in the case of free convection alone, 1t is equal
to zero ("closed" channel).

(3) At the channel wall, the velocity of the adhering boundary
layer of fluid is equal to zero:

Y | (4.1)

(4) The temperature is continuous within the adhering boundary
layer (does not have any jump)

(5) The flow of heat is continuocus within the adhering boundary

layer (does not originaste from any chemical exsothermal or endothermal
reaction nor other accumilation or generation of heat):

() -~ (=),

- T82Y
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2. Special Boundary Conditions

To the general boundsry conditions there must be added, in each
case, special boundary conditions of the heat distribution in the mass
surrounding the channel or in the channel wall, that is, some informa-
tion must be given relative to 6

These boundary conditions are generally divided into two classes:
namely, nonhomogeneous and homogeneocus (ref. 1). Two forms of the typi-
cal nonhomogeneous conditions in the hest transfer are given as follows:

(1) The temperature 6, is given at any point of the contour L.
This is the simplest boundsry condition that may be directly substituted
in the solution (eq. (4.7)), and that gives the required result. These
conditions, in their turn, must satisfy the following initial conditions:
along each generatrix (parallel to the Z-axis) the temperature must vary
according to the linear law (eq. (3.5)). Hence, the contour of the L
section is involved and not the entire surface of the channel wall. If
in particular cases this requirement of the boundary condition is not
obgerved, it is impossible to use the "fundsmental” linearized equations
for the solution of these cases due to inequalities, (eq. (2.9)),

Vo # e}
vy % 0

(2) The heat flow A(d6/0n); 1s given emtering the fiuid from the
surrounding mass. This condition can likewise be substituted in the
solutlion and will give the required answer after more or less compli-
cated computations. This boundary condition must satisfy the conse-
quence from the initial conditions, namely formula (3.22), otherwise
equation (2.9) will again be violated and the phenomenon will be
unsteady. o

The most typical homogeneous boundary condition is the proportion-
ality between the heat flow and the temperature at each point of the
contour L; the coefficient of proportionality varying from point to
point in correspondence with the special thermal properties of the sur-
rounding mass and the geometrical configuration of the contour L:

36,
o
5 = £(1) = £1(x,9) (4.4)
e
L -

In order to be gble to use the "fundemental" equations, it is necessary
that equation (2.9) be observed, that is, that the functions f and £y
are independent of the coordinate =z.
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The case considered most is the one for which the thermal properties
of the surrounding mess are characterized by the following extremely gen-
eral assumption: at finite distances from the channel there are neither
heat sources nor sinks in the surrounding msass:

A5, = 0 (4.5)
This assumption does not exclude the presence of any kind of thermal
phenomena in the surrounding mass. For examplé, the channel fluid serves
as 8 source of the local thermal phencmena in the channel region in cor-
respondence with formulas (3.22). Moreover, the surrounding region per-
mits the existence of heat flows caused by the presence of "infinitely"
removed sources and sinks. The latter must be at such a distance from
the channel that the gradients they produce in the surrounding mass (in
the absence of the channel) do not appreciably depend on the coordinates
in the immediste vieinity of the channel. In particular, formula (3 5)
represents & reflection of one of these dlstributions of the thermal
field in the surrounding mass.

The application of homogeneous boundary conditions reduces the
problem of the solution of equations (3.9), (3.20), and the ones to
follow to the problem of characterlstic values, exemples of which will
be given later.

In certaln cases boundary conditions of the different classes may
be combined with each other. The solution of a linear differential
equation simultaneously satisfying certain boundary conditions is egual
to the sum of solutions each of which individually satlsfies each class
and form of boundary conditions. However, a physical sense will be
possessed only by those solutions which correspond to the same values
of the parameters A and k. This characteristic of the problem in-
vestigated differs from numerous popular problems connected with the in-
vestigation of the biharmonic equation, and the phenomensa of heat
transfer.

3. Basis of Solution Scheme

With account teken of the boundary conditions, the process of solu-
tion of the concrete problem can be indicated in the following msnner.
In the surrounding mass in the plane =z = 0, the contour L(r,¢) is
given of the section of the channel (fig. 3). We divide the contour
into elements 41, the center of each element having the coordinates r
and ®@. Using. expressions (3.29) and (3.31) and the general and special
boundary conditione and having some value of_ A corresponding to k, we
write the following equations for each of the elements:

82%
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vy, = 0= i [anlJn(i]cr)cos(nq) + Tp11) +
n=0

a.nan(ikr)cos(ncp + Tnlz) +
b l- kr)cos(ng + Typp) *+
by Ny, (- kr)cos(np + ‘rnzz)] ' (4.8)

k2
6r, = é—B— Z[anlJn(ikr)cos(ncp + Yp11) *+

n=0

anan(ikr)cos(ncp + Tn_'l.z) -
bnlJn(— kr)cos(ng + YnZl) -

bpoliy (- kr)cos(ng + Tnzz)] (4.7)

% , dr 06 @)L (2.8)

(%% =(a?xa—n+a$xan

Tf the boundary conditions are not homogeneous, the left sides of
equations (4.7) and (4.8) are given. If, however, the boundary condi-
tions are homogeneous; in particuler, if equation (4.5) holds, then in-
stead of equations (4.7) and (4.8)(or in addition to them if the bound-
ery conditions are mixed) the external problem equation (4.5) must be
solved. The solution of this external problem will be in the cylindri-
cal coordinates (eq. (3.25)) expressions of the form

0, = Az + E In % N i: [Cnlrncos(ncp + Tp1) *+ cnzr'nCOS(mP + Tnz)_]
n=1 : (¢.9)

The significance of the expression Eln r/R will be discussed later
(ck. 5, sec. 4); for the present, we assume that E = O.
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In this way, there is obtained a system of sets of equations (4.6)
to (4.9), in the unknown constants

8nls 8n2s+++3 Pnls Pp2s--+s Cnils an,..

Ynl’ Tnz:"‘) Tn]]; TJ:L'LZ’.

The number of sets of these equations 1s equal to the number of elements
d? divided by the contour L of the cross section.

If it is found that these equations are simultaneous, the chosen
value of k i1is suitable. In the contrary case, it is necessary to
choose a new value of k, that is, of the temperature gradient A, and
to repeat the operation of solving the equations.

In principle, even an infinitely lerge number of elements of the
contour L can be treated with a finite degree of accuracy for each
value of the parameter k by a finite number of mathematical operations
(ref. 2). Hence, in any case the existence of a solution need not occa-
sion any doubts.

4, Method of Solutlion

In general, however, the solution according to the preceding scheme
is very laborious. Hence, only those general conslderations have signif-
icance which permit: (1) the separation of the typical cases for which
the number of equations is essentially reduced and, (2) those cases
vwhich may serve as guides rendering the investigation of assoclated veri-
ants superfluous or essentially facilitating this investigation. The
most important of these general considerations 1s the consideration of
symmetry. In genersl, these conslderations lead to a ratiomal locating
of the origin of coordinates and, also, tc assigning a direction to.the
zero azimuth in order to eliminate, as far as possible, the azimuthal
corrections Tnll’ Tan’ . _.

ILater on in this report, examples of the application of these con-
siderations will be given.
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CHAPTER 5
STEADY CONVECTION IN VERTICAL CHANNEL OF ROUND SECTION

1. Dismetral Antisymmetry of Free Convective Flow

For a channel of round cross section, on the basis of equations
(3.18), (3.29), (3.30), and the general boundary condition 1, it is
convenient to write:

To(tkr)  Tolicr)] )
V= Yo TR T Tl +
(7, (1) 34 (k)]
vy Ji(.]R) - Ji(kRzJ cos @ + > (5.1)
To(1kr)  J,(k))]
"2 |T(TE) T T,0E) cos 2 + ---

The convenience of this expression lies in the circumstance that the
boundary condition 3 (eq. (4.1)) is automstically satisfied for r = R
at the channel wall. In this expression the Neumann functions are ab-
sent because of boundary condition 1, since these functions go to in-
finity at the origin when r -+ 0. The direction of the XZ-plane from
which the azimuthsl angle ¢ is celculated is chosen from considere-
tions of symmetry parallel to the external gradient. As speclal bound-
ary conditions we assume, as in equation (4.5), '

giZE = A; (g—iE)w =-B _ - (5.2)

By equation (4.9), these conditions are rewritten as follows:

D
8, = Az + <; Br + ;) cos @ (5.3)



30 NACA TM 1407

where D denotes an unknown coefficient. By equations (4.7) and (5.1)
for the temperature within the channel, we obtain:

%2 Tolikr)  Jo(kr) 77 (1kr)
8 = Az + éE_ Vo [;O(ikR) + Jb(kR) + vy S EVE)) +
3y (1er) To(tkr)  Tp(ier)]

While in equation (5.1) it 1s still possible to substitute Neumann func-
tions so that, by mutual compensation, they do not give infinity when

r + 0, they will necessarily, because of the sign change in the last
equation, give infinity when r -+ 0. For this reason, the coefficient
of these functions in solution (5.1) must be identically equal to zero
(i.e., these functions must be excluded from the solution).

In correspondence with the genersl boundary conditions equations
(4.2) and (4.3) and substituting equations (5.3) and (5.4), we obtain
for =R ' o

2
vk D
9+-90=2FV1=-BR+§;

6scos @ = (8)pg; 60 = (8)r0o

J. (1kR) J, (kR)
) 7\szﬂ ik [Jo(ikR) - ———likR :I . k [JO(kR) - —————lkR :l ] }\e(_ B . D)

gB Jq (1kR) ' Jq (kR) R2
(5.8)
Vg = Vg = ... = 0 (5.7)
Eliminating the coefficlent D from equations (5.5) and (5.6), we
obtain ' ’
2 2
k“vy | iIkRIg(1kR kRJIn(KkR vkv
Av 1 O( )+ 0( )_2 =BR+—D-=2BR—2 x (5.8)
NegB J1 (1kR) J1(kR) R gB

or _

v-(kR)Zvl A [1ERTG(1KR) kRJO.(kR)
BR° = — g5 {E[zmim) T Tt (5.9)

T83¥
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From this equation it is seen that in the case under consideration,
the laminar motion of the fluid (expressed by its "amplitude"” vi) is
uniquely determined by the following conditions: by the parameters of
the fluid and thermal conductivity of the surrounding mass Ay, by the
diemeter of the channel 2R, and by the regime of its operation- the

transverse gradient B and the longitudinal gradient A (through the
parameter k).

Because of this motion of the fluid, it will transfer upward by
convection & quantity of heat determined by equation (3 23) If the
equation is rewritten to apply to the given concrete case, the follow-
ing equation is obtained:

pcvk.zv2 J (ikr) Ji(kr) 2 2
EI(EET cos”@ r dr 4o

2
_ apevv? | [KRI,(1kR) KRT(KR) KRIA(1KR)  KRJ(KR)
T [;.J'l(()ikR):l * [JlEkR):l e [:Lch()ikR) " J_l%m)]

(5.10)

Eliminating wv; from equations (5.9) and (5.10) gives equations that
permit expresasing this heat directly in terms of the fluid parameters
and the thermal conductivity of the surrounding mass, the channel di-
aneter, and the channel operating regime. This elimination gives:

G (g, 7\1‘;) (5.11)

Zﬂpcgﬁ B

- F1(§)+ Fg(s)

RS

[ B X T S nte) e rp(e) -5 (6, %) (522)

where the first factor on the left side is determined by the channel
radius, the second by the filuid parameters, while the third comnects the
transverse temperature gradient B with the heat quantity Q tTrans- =

ported by convection. On the right side we have a linear function of

the ratio of the heat conductiv1ty of the fluid A +to the heat conduc-
tivity of the surrounding mass - Ae; F(t) and Fo(E) are coefficients of

the function (Ag) and were determined by the axial gradient of the tem-
perature in terms of a nondimensional parsmeter such as equation (3.10):

o)t - xaxrt - - (5.3)
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Table I glves the values of the functions
2tZ - )

(&) = ETo(1t) 12 [ &9g(t) P o [E90i8) | eTo(t) [ /2
T (T + ey | —1J7(1E)  T1(E)

£T4(18) T, (E)
F2(s) = F a(8) X [ R * T - ]

N >(5.14)

¢ (&, = =F1(§)+lF2(§)
< 7‘e) Ae

H <§, %i) = %? Fi(E) + Fp(t) .)

It is to be noted that for a considerable distance about ‘the point
£ = 0, the dependence of Fl, Fz, G, and H on t%4 is very nearly
linear.

By analyzing the preceding computations, it may be established that
the case discussed corresponded to the mixed special boundary conditions.
In expression (5.5), the term BR represents the nonhomogeneous part of
these conditions, and the term .D/R represents their homogeneous part.
For this reason, the coefficient D was excluded from further expres-
siong and the coefficient B determined the final result of the
computations.

Therefore, the purely homogeneous case, when B = 0, 1s of speclal
interest. From equstion (5 9) it is then seen that the expression in
braces acquires the meaning of a fundamental equation for determining
the "characteristic values" of the argument kR = E.

Jo(18)  Jp(8) A
: [—igl(ig) * Ji(g)] =z ( - T) (5.15)

The value kR = O, that is, A = O for the corndition B = é, corresponds
to the condition of complete isothermy and in steady state processes does
not represent convective flow of the fluid.

The characteristic values of £ of the transcendental equation
(5.15) depend on the relation of the thermal conductivity of the fluid
and of the surrounding mess as shown in table II and figure 4.

182%
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The azimuth ¢ 1in this case drops out entirely from the computa-
tions. It is, mathematically speaking, arbitrary The experiment is
described in chapter 10, section S.

It is important to note that the amplitude of the veloecity vy in
this case 1s determined by the quantity of heat transferred by convec-
tion, that is, by equation (5.10) and not by equation (5.9) from which
it drops out because of equation (5.15). Thus, within the range of the
linearized treatment, it may be shown that the investigated form of con-
vective flow can transfer arbitrarily lsrge quantities of heat upward.
As a matter of fact, for large velocities of fluid motion, we should ex-
pect some phencmena similar to turbulence. Due to this fact, the linear
treatment becames insufficient. Actually, both the velocities of the
laminar flow and the quantity of heat transferred by convection are lim-~
ited (ch. 10, sec. 3).

2. Criterionsl Significance of Convection Parameter

The structure of the parameter §4 follows from its criterional
significaence in the sense of the theory of similarity:

4
4. r)* = BBARE X Y | gr x Pr (5.16)
V2 x

The Grashof number Gr and the Prandtl number Pr in this carbination
(product) are the usual criteria of the theory of similarity when it is
a question of the transfer of heat from solid bodies to flulds or con-
versely. In such cases this product plays the role as an argument and
the Nusselt number as a function (ref. 1).

In this case, the Nusselt number is zero because there is no over-
all transfer of heat from the channel wall, the heat being transmitted
upward by convection from one part of the fluld to another. In this
heat transfer some significance may be ascribed to the Nusselt number,
in particular, by denoting this number as the ratioc of the heat trans-
ferred from the lower to the upper part of the liquid by convection plus
molecular thermal conductivity, to the heat transfer only by moleculsr
conductivity according to equations (3.23), (3.24), and (5.10)

Nkt = 1 + 2 : (5.17)
Q%

However, since in the linear treatment the "amplitude" of the velocity
vy 1is obtained as arbitrary, and the value of Q 1is likewise arbltrary,

Nu*f according to equation (5 17) becomes indeterminate.
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On the other hand, the criterion §4 also scquires & special,
double significance. In the first place, it 1s the criterion of stabil-
ity of the fluid; anhd secondly, it is simultaneously the criterion of
stability of the fluid motion. This subject will bée discussed in more
detail in chapter 10, sections 1 and 3. Few other examples are known of
such coincidence in one numericel value of different meaning contents of
this criterion.

In the sbsence of an axial gradient, for A= 0 (i.e., for & = 0),
the transverse temperature gradient B uniquely determines the guantity
of heat transferred upward by convectlon. Letting & = 0 1in expressions
(5.1) and (5.4), we obtain

v r
o+~ 8vy — 5 XFCcos O ? (5.18)

VVq 9 '
3 11 A
BR” = 4 —EE— [L-F;;j ‘)

where vy, Tepresents a new limiting "amplitude" of the process. The
quantity of heat transferred is determined by expression (3.23)

RAZr B2
]
Q = pc ver ar dp = 75 x%;'i—xl T x R8¢ (5.19)
PN
0_Jo

4 |

Note that the fluid motion in this case recalls the Poiseuille case
in many respects, and the temperature distributlion is the same as 1t
would be In a solid body.

The case discussed here 1s diametrally antisymmetrical about the
Y-axis, both with respect to the velocitles and the temperatures, as
seen from equations (5.1), (5.4), and (5.7). Hence, the total-volume
flow V of the fluid and the over-all heat interchange of the fluid
with the chennel walls, according to egquation (3.22), is equal to zero,
the duet is "closed"; we are dealing exclusively with free convection.

As an example, figure 5 shows the distribution of velocities, tem-
peratures, and heat flows in a circular channel for the case where
A = Ae a5 a function of the distance from the channel axis (i.e., in a
meridional section). The line of temperatures is prolonged into the

82%
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surrounding mass outside the channel boundary. Figure 6 shows the dis-
tribution of the seme magnitudes in the form of isolines in the plane
where 2 = 0; the isotherms again being prolonged into the surrounding
mass. Figure 7 shows the same curves as figure 5 to a larger arxrbitrary
scale. .

3. Thermal Role of Pipe Walls®

If the phenomenon under investigation is observed in a channel
which is not drilled in a dense block but in a pipe inserted in a block,
the value of A entering formula (5.6) and the others will depend on
the thermsl conductivity of the material of the pipe Kl, of the block

%2, as well as on the pipe radli, the internal radius R, the external

radius Rl’ and on the temperature gradient B, 1in the surrounding mass.
Let us find to what equivalent value of the thermal conductivity Ke

the thermsl conductivity of the pipe and also the equivalent value of
the gradient B correspond.

By consldering the fact that for the case of a pipe noc heat sources
are assumed to be elther in the pipe or in the surrounding mass, then

A31=A92=A6e=0 .(5.20)

we find, with similarity to equation (5.3)

at
6, = -Blr + T ) cos P + Az

(5.21)
6

D
2 (—Bzr + 5:-) cos @ + Az
The temperatures inside the pipe 61 and outside the pipe 6, Jjoin

each other at the outer boundary of the pipe at the radius Ry without
fluctuations in the temperature and thermal flow -

D D T
1 2
ee—-BlRl+§—=—Ble+‘R—
1 1
5.22
b, o\ [ (5.22)
M(-BL-Z2|=M(B2-3
Ry 1/ ]

SThis sectlon utilizes dete From the work of V. V. Slavnov.
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At the inner surface of the pipe the temperature of its material
unites with the fluid temperature in such a manner as though a channel
were drilled in a dense mass with the temperature conductivity Ae and

the channel tempersture ee: -

D m
6 =-BR + === - R +2
e X R R
L (5.23)
Dy D
7\1 -By -5 = Ae(-B - =
R R

There is thus obtained a system of four simultaneous equations connect-
ing the followling 11 magnitudes:

B By By

D Dl D2

xe 7\l 7i‘2
R Rl

Of these, R, Rl’ kl, kz, and Bé are_given; the unknowns_é;e B and

Ke. It may thus appear that the four equations are not sufficient for

eliminating the excess unknowns By, D, Dy, and Dy. The structure of

equations (5.22) and (5.23) is such, however, that it 1s possible to
proceed without these eliminations.

In fact, eliminating the expressions szz/Ri and DKG/RZ from
equations (5.22) and (5.23), respectively, we obtain
ﬁ

D .
1
31(7\1 + 7\2) -7z (7\2 - 7\1) - 27\2B2 =0
Rl -
> (5.24)

Bi(A 1+ ) - E% (N -M)-2A\B=0

-

b
Now through eliminastion of the expression —EEE X (Mg - M)A - A7)
from the latter equations, we obtailn RIR '

T82%
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R% RZ R?_ RZ

B FM+MMM'M)(M+¥KM‘M1 2[%JM‘M)B@ﬂ%'Mﬂ
1 - = -
1
(5.25)

Whatever the values ascribed to the magnitude By, equation (5.25) re-
mains valid if we assume

M+ M) - M) (q + 200 - M) BAOp - M) Bada(Re- M)

RE RS B R
(5.26)
then, the final expressions are cbtained _ i
2 )
o 2le@)) L]
N 2
A RCINNO
F (5.27)
2
W)
S @ @]

By using these equations, tests conducted in pipes may be compared
with the theory worked out for a channel in a dense homogeneous block.
We remark again that the case considered here is that of diametrally
antisymmetrical convection.

4. Superposltion of Forced and Free Thermal Convection

In contrast to the previously discussed case, we ghall now consider
the case where the fluid in an open channel is drawn by an outside pump.
In this case we are justified in expecting the superposition of forced
and free convection. In eguation (3.1) an essential part 1ls then played
by the pressure produced by the pump; and for the vertical channel, we
must write in place of equation (3.7)

1

- E»<%§ - gBO + VAV = 0 | (5.28)
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Equetion (3.8) remains valid

Av = XA5; R (5.29)

Eliminating - v from these equations, we get

_ BBA A9
Mo - B0 = o X 35 (5.30)

The preceding incomplete bilharmonic equation is linear, but nonhomogene-
ous by the assumptions made; the right side of the equation is not zero.
Guided by the usual rules we first seek a solution of the homogeneous
equation coinciding in form with equation (3.9):

AABO - k490 = 0 (5-31)

By bearing in mind that for a vertical channel the condition
dp/dx = 3p/dy = 0,% is observed, then, by snalogy with equation (3.19)
and in correspondence with equation (3.20), aend by making use of the
general rules of solving nonhomogeneous equations, we obtain the follow-
ing conditions: ’

. ] - -1 g 0
60 = 61 + 653 e_eo+Az=eo-p—gEX3§ (5.32)
whence -
%’E— = - pgB Az; p=- % pgB Az? (5.33)

Integration of equation (5.33) provides the assumption that the pressure
produced by the action of the pump drops to zero precisely in the plane
z = 0, or in other words, that the XY plane passes through that sec-
tion of the channel which is considered the origin of the pressure
computation.

. In comparing this result with the case discussed previously we note
that this case does not introduce any new terms in the solution of the
equations.

The forced pumping of the fluid does not show up in the pressure or
in new.-terms 1n the solubtiouns, but only in the added quantity of heat
which the pumped fluid transmits to the walls, and only in the flow rate
of the pumped fluid (according to equation (3.22)). In particular, the

4Due to the fact that all the vectors in equation (3.1) are
collinesr. . :

TAZ7%
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Poiseullle case corresponds to A+ 0 and k =+ O, and it is obtained if
the following formulas employ a series expansion of Bessel functions,
which consider only the first two terms.

1l 2
JO(u)uﬁO.* 1-7Fu _ _ (5.34?_

Using equations (5.32) end (3.14) as well as equation (3 10), we ob-
tain the same form of solution, namely,

RGN gy (i) Iy (k) |
VY0 | TR T ToER) | T 1| i) T T1(KK) cos @ +

cos 29 + ... (5.35)

J‘z(ikr) .;rz(kr)1
J’z(ikR) - Jz(kR)_

vkz Jo(ikr)  Jolkr) Jl(ikr) Jp (k)
6 =4z - Vo | To@m®) * To0R) T ) Y IRy | s P

l:J'Z(ik:r) . Jz(zcr):‘ cos 29 4 +.- , (5.36)

V2 | T(OR] T T, (R)

As special boundary conditions, which now are more exa.ctly specifled.,
equation (4.9) is used . -

D r
6, = Az + (—Br +;) cos @ + E In £ + 659 (5.37)

On the basis of the general 'boundary conditions (eq_s (4.2) and (4.3)),
we write o . _ . T

g Az+2§]g—2-(vo+vlcoscp+vzcos:3cp+...)

D
Az + (—BR + I—{) cos @ + Bgq _ (538)

AvkS 131 (1kR)  Jq(¥R) Jo(1iR)
';_s‘ M [Jo(ikR) TEE | T T ) ¢

J_OE;H% cos § = A, [(—B - i%) cos P + IE;I (5.39)
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Eliminating D from the preceding equation, we again obtain equation
(5.8); instead of equation (5.7), only vy = O remains. -Moreover, there
is found

sz'V'o
2 —5— = 0 . (5.40)
A\  6ge | 191(1R) I (kR) E
e 2e [;b(ikR) Jb(kR7 (5.41)

The total volume of fluid pumped upward through the channel, according
to equations (3.21) and (5.41), is computed to be

Rpan R (Tolikr)  Jo(kr)
vrdr dg = vao Jo(ikR) - Jb(ka r
0 0] ' o - )

2xvgRE [10; (1R)  JL(R) | 20N E

On the basis of equation (3.22), the physical sense of the magnitude E
is determined from equation (4.9).

=
i

~2iNHE = Q; ) (5.43)

nemely, this magnitude in & certain scale is equal to the heat flow
passing through from the channel walls into the fluid over a distance of
1 centimeter of the channel height. There is thus establisghed a rela-

tion between Q,, E, and A, (i.e., k). The term containing vy de-

scribes both the free and forced part of the convective fl§w, but it is
equal to zero in the absence of forced convection. The phenomenon de-~
scribed by this texm possesses a strict axial symmetry.

In the absence of a transverse gradient, B = O, either v, o= 0 or

the considerations leading to equation (5.15) are valid. The term con-
taining vy describes only the free part of the convective process.

It is again necessary to emphasize that the magnitude kR 1in all
terms of equations (5.35), (5.36) and so forth has the same value.

As an example, figure 8 ghows the results of a computation of sev-
eral cases for the condition of absence of a horizontal gradient vy = 0

and B = 0. On the axis of abscissa is laid off the value of Vo to an

TR2¥%
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arbitrary scale and on the axis of ordinates the parameter (kR)4, pro-~
portional to the vertical gradient A, is 1laid off. The Tigure shows
several points in these coordinates and together with these shows the
corresponding velocity distributions (solid curves) and temperatures
(dotted curves) along the channel dismeter. The equivalent Poiseuille
parabola is drawn on each sketch. The coordinates of the selected

points and some numerical data for this figure are given in tables III;
IV, and V. o

5. Application of Cylindrical Functions of Complex Variable
Where Temperature in the Upper Part of Vertical

Channel is Higher Than in the Lower Part

In the computations, the case must be encountered where A 1is

greater or less than zero so that (XR)% receives a positive or negative
sign. The computations are carried out with the aid of the same Bessel
* function tables (ref. 2), bearing in mind the following circumstances.
In equation (5.1) and further on, the magnitudes 4ikR and 4+kR are
roots of the characteristic equation (3.10) )

(kR)® = gaeR® ' (5.44)

R

for the differential equation (3.9). If we denote

4
4 4 -A R
| = g |* = BELAR

o (5.45)

its corresponding roots will be

Ep = & Vits Ezy = & /18

VI= 11;51; V= lj}g? = - 1/1 (5.46)

Hence, in equation (5.1) and so forth, it is now necessary to write

Jo(+/1ikr) in place of Jo(ikr), and Jo(+/-ikr) in place of Jy(kr) and
so forth, where it is useful to remember That

Io(~v/Ikr) = Jo(~/1kr); I (/Ixx) = 3 (+/kr) (5.47)
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with the asterisk denoting the conjugate value of the complex magnitude.
In the expressions similar to equation (5.1) and so forth, terms of the
following form will enter:

In(VIr)  Tp(+/ o) TE(E/Dr)  gp(i+/Te)
To(VIR)  a(+/FDR)  TE(A/DR)  Ty(i~/TkR)

_ Jh(iq/fkri]* _ Tp(i-/1kr)
) [Jn(i-\/'i‘kR) I, (1+/1kR)

(5.48)

In particular, for n =0

J‘O(i-\/_ikr)J* ) Jo(i-\/—ikr)
Jb(iq/sz)

21 bexr (kr) Xbeickm bei(kr) X ber(kR)
JO(iW/ZkR) ber(kR) 2 + bei(kR) 2

(5.49)

Corresgpondingly, in expressions similar to equation (5 4) and so
forth, there enter the terms

2 Jo(iﬂJzkr) * 0(11/_kr) - 24kP ber(kr)X'ber(kR)-Fgéi(kr)X'bei(kR)

ik

J (1~/1kR i (1+/1R) ber(kR) 2 + Dei(kR) 2
(5.50)

Thug, the expressions for the veloclties and temperatures are cbtained
as real only in the case where the "amplitudes" of the wveloclity vy 8are
assigned purely imasginary velues.

The symbols ber and bel denote the cylindrical_fuﬁ?tions of
Thamson. i

These formulas were used in drawing the figures and in gome of the
tables. .

82%
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CHAPTER 6

UNSTEADY REGIME OF GRAVITATIONATL. THERMAL CONVECTION IN

VERTICAL CHANNEL OF ROUND CROSS SECTION

1l. Genersl Observations

Let us consider a block in which a vertical cylindrical duct or
channel has been drilled, and consider also a certain temperature gra-
dient characterized at infinity and produced by both the vertical com~
ponent A and the horizontal component B according to equation (5.2)
Into this channel a heated (or cooled) fluid is suddenly introduced.
Since the channel walls are colder (or warmer) relative %o the f£luid,
thermal convection in the fluid may be set up under known conditions.
This convectlon will transfer heat upward and, thus, distribute the tem-
perature further. If we are dealing with a casting poured into a cold
form or mold, this redistribution mey influence the development of the
process of solidification of the melt. - We shall not consider the pro-
cegs of solidification associated with the heat of fusion. We shall
restrict outselves to the case where B = 0.

2. Periodic Process of Cooling Nonsolidified Casting

For simplifying the computations the following periodiec process is
assumed, which is probably typical. However, other typical processes
with their own periods are possible. ' - . -

The first stage of the process will be that of filling the channel
with a strongly turbulent fluild which, on coming in contact with the
channel walls, is simultaneously cooled. Because of the strong turbu-
lence of a nonthermal origin, effective thermsl conductivity and diffu-
sivity of the fluild will be much higher than those tabulated (molecular).
Such a fluid will, therefore, in the thermsl relation, represent the
analog of a strong heat-conducting-solid body which had been cooled after
a sudden heat impulse was imparted on the axis of a cylindrical systenm
of coordinates. Such a thermal process has been investigated well and
is discussed in the following paragrasphs. The deciding factor in the
process is the increase in the turbulence coefficient of the thermal
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diffusivity of the fluid. Pearticularly, simple relations are obtained
in the case where the form into which the fluid is poured does not con-

stitute an infinitely extended homogeneous body but may be-considered as -
a thin-walled vessel more or less thermally insulated from an infinite
reservolr of constant tempersature.

As a whole, the first stage 1s charscterized by the fact that its
violent mechanicael nonthermal processes have excluded the possibility of
the occurrence of a more or less definite convective thermal motion. The
duration of the first stage is determined by the lessening in the fluid
of turbulent motion and by the decrease of the thermal diffusiv1ty of the
fluid.

-T82%

The second stage sets in when the turbulent motion is essentially
ended, and the thermsl convective motion is initiated and develops within
the frame of the thermal pattern produced during the first stage. The
transfer of this heet by convection is not, however, large at this time,
and no essential distribution of the temperature has been produced during
this time. The duration of the second stage is determined by the megni-
tude of the kinemstic viscosity of the fluid, that is, by.the ratio be-
tween the forces of inertis and friction.

Finally, the forces of inertia in the convective motion practically .
dwindle to nothing. A more or less stable convective motion is estab- .
lished which gradually dies down as the temperature differences produced
diminish. As a result, the convective orderly transfer of heat dis-
tributes the temperature, the upper part becoming warmer than the lower. .
The distribution proceeds slowly as compared with the rate of cooling of
the fluid in a cross section. This distribution comstitutes the third,
and last, stage of the process. The character of the third stage depends
on the cross-sectional mean tempersture distribution produced at the
start of this stage. It is possible that, in the course of the third
stage, the character of the process will slowly change a8 a result of the
process of the upward heat transfer. Moreover, the character of the third
stage depends on the absolute rate of cooling, that is, on the intensity
of the heat removed from the fluid by the channel walls. In this connec-
tion it is desirsble to investigate two varients, one of which is rapid
and the other slow.

3. Pirst Stage - Pouring Strongly Turbulent Hot Fluid

In the case of infinite extension of the surrounding mass, the pro- _
cess in it 1s described at small distences from the channel and at the -
initial instants by the following function of the distance and the time
(refs. 1 to 3).
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r<h (6.1)

If the channel were infinite, that is, if the distances of interest
were always much less than the channel height h, this formula would be
very accurate. If, however, the channel height is not large as compared
with the distance at which the temperasture still plays an essentlal role,
then at distances greater than h, the channel in the n.niin:.te surroru.nd-
ing mess resembles a point. This relation then holds :

Q .z
I 2
Bgp = ———375 &
¢ (4w t)
e
r>h P (6.2)
2
t>2¢—
e S

Because of the cylindrical field of the temperature distribution,
equation (6.1) goes over into the spherical distribution equation (6.2),
gpproximately at that instant, then

By o= B (6.3)
the temperature path equation (6.1) near the instant +t,; in the channel
neighborhood will change gradually and in the limit go Gver into equa-
tion (6.2).

In these formulas Q represents the heabt content of the fluid
poured into the channel,

Q= :rithpc(GH - 0, (6.4)

where GH is the initial fluid temperature, and 68,, the mean temper-
ature of the £luid walls and the surrounding mess. The process of
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cool at each distance r 1is characterized by its specific time, for-
mulas (6.1) and (6.2),

't=-r—- (6.5)

The thermal behavior of the channel fluid can hardly be described
by mathematical formules in the first stage of the process. It may be
assumed that it is approximately described by formule (6.1). This des-
cription will be sufficiently accurate for those instants of time
where

2 . 2
R _ R , L
E_-t3<t>t2=4x (6.8)

that is, after the passage of the .characteristic cooling time at the
channel walls (r = The symbol x dJdenotes the heat conductivity of
the fluid increased by the turbulence. Expeanding the exponentiasl func-
tion in equation (B.1) into a series, we may write

Q
— t 2 .
pch 2fr
6 = 4ot ll Tt (R) ' (6.7)

The distribution of the fluid temperasture thus tends to the parabolic law.

The height of the corresponding parsboloid greduslly decreases with time
according to the hyperbolic law

t t 2
3 2(x
0= 9H T [ -—_E—(-R;)} (6.8)
Hence, the total temperature decreases with time according to the -3/2
power, analogous to equation (6.2).

If the fluild is poured into & channel of a heat insulated pipe, the
equation describing its cooling process will be (2 2) for v = 0. The
boundexry conditlons are homogeneous .

e
®.--F (&
R

where H denotes the "reduced" thickness of the heat insulation. Be-
cause equation (2.2) has now become linear and homogeneous and because
of the homogeneity of the boundary conditions, we assume the exponential
dependence of the temperature on the time. For this purpose, we rewrlte
equation (2.2) thus -

A9 ==6 (6.10)

2=

~182%



4281

NACA TM 1407 ' 47

The solution, similar to equation (3.26), is : e

t
6 = 2 eHmegm Jo - %-m.r (6.11)

Tt is rendered exact by the boundary conditions equation, (6 9) which
assume the following concrete forxrm:

e (EORIE S
() S

Z Jo( :3_23) | )

m

\

Hil o

The extreme values of the nondimensional parameter that enters here will

be:
Fanwe S
U * 0
when H - 0; g (6.13)

(=) -

AJ-qu-ram—zms 5.520, « - . /

In the last and least favorable case, the exponent rapidly increases with
the number of the term of the summetion equation (6.11). For example,

when H - «;

5.520 |
Q@ = (2.405) q = 5.25q; ~(6.14)
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Therefore, in expression (6.11) the second term will decrease much more

rapidly than the first. In particular, when the first term decreases to

1/e times the initial value, the second term decreases to e~°:25 « 1/300 -
of its initial value. The smaller will then be the values of the follow-

ing terms of equation (6.11). We shall, therefore, use only the first

term of the sum of equation (6.11)}, and write

Qb = at -q. )R 2
o~ oge JO(@Xr)seHel 1-(—2)1(—)—x(§3) (6.15)

Comparing this expression with equation (6.8), we recognize the quadrstic
term in the brackets and the dependence on the time given by the factor
before the brackets. In contrast to equation (6.8), however, the form . N
of the paraboloid now no longer changes with time, but the time depend-

ence is greater than in the exponential formuls (6.8).

82%

The duration of the first stage in the case of the heat Insulated
pipe may be roughly estimated by the characteristic, that at the instant
of its completion all terms of equation (6.11) starting with the second
term are less than 1/e times their initial value. This characteristic
determines the duration of the first stage in the least favorable case
thus

2 2 -
1 R R ;
t, = ~ = 6.16)
47 Tq; x(5.25)2 21-5% (

Generally, however, the duration of the first stage will be shorter. The
similarity of the expressions in equations (6.7), (6.8), and (6.15) per-
nmits assuming an approximstion for the computations

e-tZ/J-c = Jo(kR) (6.17)

In t?is case, the duration of the first stage is evaluated by formula
(6.6).

All the preceding considerations show that the corresponding for-
mulas exclusively describe the dying down of the process a < 0. Thus,
at the end of the {irst stage the distribution of the temperatures over
the channel radius 1s always found to approximate the parsbolical.

4. Second Stage - Developing Free Convective Motion
The second stage under conditions of fluld laminar motion 1s des-

cribed by the equations in which the fluid parameters correspond to their .
steady, moleculsr (tabulated) values. Because at the end of the first
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stage the temperature distribution over the channel cross section is the
gsame in all cases (namely, approximately parsbolical), to determine the
maximum duration of the second stage it is necessary to treat only the
single equation, so that

ro oL xép
v_-pxdz g6 + VAV (6.18)

The second stage includes the steady state of motion described by
equation (6.18). The duration of this stage, speaking generslly, is not
determined by the forces (gp6) which give rise to it, but is determined
by the fluld properties (v) and the form of the fluid flow. Hence , wWe
assume

v = (u+ uo)eq-t
(8.19)
Qug = vAu,

where u represents the effect of the pressure gradient and ugy repre-
sents the solution of a homogeneous equation similar to equation (6.10)

ug = uﬂo(@ r) (6.20)

The solutlion is made exasct by the following two boundary conditions;
namely, the presence of an adhering lasyer and the closeness of the chan-
nel cavity. The first condition gives

(v)r=3 = [u + U dg (@ R)] e - o (6.21)

The second condition gives

R N2x 2 ‘Tl(‘\’;vq X R)
f f vr dr 49 = | 2x B-ZE + Uy 27R%le9t = 0 (6.22)
0 o ’

Whence, eliminating the ratio u/ul , we obtain

2 @ RJ, (@ R) = J‘l(ﬁ-—a R) (s.23) -

By considerations analogous to those adduced in conmnection with
equation (6.15) and the adjoining equations, the smallest root (besides



50 RACA TM 1407

= 0) of this transcendental equation is of 1nterest Computations

give as its value
v

q = - ze.gsv (6.24)
R

2 o

b X R 5

g " 26.49v /

Because for the majority of fluilds v/k = Pr is greater than unity, the
duration of the second stege is less than that of the first-stage (eq.

(6.18)).

5. Third Stage - Cooling Fluid in the Presence of Convection
Repid Variant

The third stage is characterized by the parallel dying down of both
the thermgl and the hydrodynamic phenomens. Denoting the general damping
exponent by q, we write in place of equations (2.1) and (2.2)

av = - gB6 + VAV
(6.25)
g8 + Av = %48

the motion of the fluid being assumed leminsxr.

In these expressions the considerations connected with the derivation
of formulas (5.33), (3.7), and (3.8) are taken into account and, there-
fore, the pressure term is omitted. Eliminating 6 from these equations,
we obtain successively '

= é% (vav - qv) (6.26)
a(vAav - gqv) + gpAv = x(vAAV - gAV) (6.27)
MY - g ( ) AV + 9————555 (6.28)

This is a complete biharmonic homogeneous equation. We shall solve it
by a widely used symbolic device explsined in deriving equation (3.19).
We set
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\
(A +5)(Aa + KB)v = Mav+ (1 + KB)AV + K2KkEV = O
Avy + k?_vl =0 > (6.29)
v= vy o+ V.
2 1 2
Avg + Vo = 0
2 kZ 2 J

Comparing equations (6.28) with equation (6.29) and multiplying k, and
k, by R, we obtain

x 7= Ggm? v Op? = - (34 2)
(8.30)
4 4
7 = (qR)?x (igR)? = LB goa

In these equations x and y denote nondimensional auxiliary var-
isbles (not space coordinates). Putting in turn g = constant and
A = constant, we obtain a system of isolines on the xy plane. It msy

show:n4 that thé isoline ¢ = constant represents parsllel equidistant
gtraight lines, end A = constant represents a family of hyperbolas re-~
ferred to the asymptotes

X_Y_pr
y %
(6.31)
x_x_ 1
y v Pr

These isolines are sketched in figures 9 and 10. TIn ihese coordinates
the isoline ¢q = O passing through the even gquadrants, corresponds to
the previously discussed case of steady processes. For further treat-
ment of the equations, we assume all general boundary conditlons, end
as special conditions we make use of the homogeneous conditions (eq.

(6.9)) and requirement (eq. (6.22)) on the "closeness" of the channel

cavity.

40115 work was carried out in 1947 by Y. Korchemkin by spplying the
rules of snelytic geometry. He likewise proved with complete rigor that
the transformations given are a necessary and unique consequence of the
basic assumption that the velocities are paraliel to the surface gener-
ators of the channel.
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The solution of equations (6 29) and (6.26) analogous to equations
(5.1) and (5.4) is then written as follows:

Jb(klr) Jo(kor)

L?b(kiR) ) (6.32)

V='V'O

J r
E(klR)z + quT_ J—g%% - | v(eR)Z + qRZ] -Jﬂ(;z—; (6.33)

32%

The requirement of "closeness" of the cavity is expressed as follows:

R
=kj[\ vr dr
0

R R
1 1
v Jalk.r)r dr - u/“ JA(k,r)r dr
0 Jb(klR)xféw ¥ Jo(kR] Jo 02

7, (kR) Jl(sz)'}

YOt BRI TR ) RgRIG(kR) (6-¢)

I

This equation establishes a definite relation between the auxillary co-

ordinstes xy represented in figure 11. From the meaning of the laminar .
processes wnder considerstion, it is advantageous to comsider only those

forms of convection flows of the cooled fluld where the cross section of

the pipe is divided inbto no more than two zones, namely, the central cir- -
culsr zone where the fluid moves upwsrd, the peripheral annular zone _
where the fluid moves downward. This consideration restricts the curve

to the point with coordinstes -

(2.405)% ~ 5.8

y
(6.35)

x = (5:520)% = 30

From its quantitative expression this variant corresponds to large
values of the difference x-y or to an unsteady tempersbure gradient
(warmer in the lower part) end may be reslized only at catastrophically
rapid cooling of the model. The analogous case for the diametrically
antisymmetric fluid motions is discusged in reference 4.

Slow Variant

Together with the rapid variant a slow varisnt may also be encoun-
tered in practice where because of slugglsh cooling the rate of cooling
® may, over a large time interval, be considered small and, moreover, .
constant. The corresponding equations will have the form
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= -x8 _
0= 5 Az &B6 + VAV

) (6.38)
@ + AV = xA8

Determining € from the first equation and substituting in the second
eguation, we obtain

8 + AV = XAAV (6.37)
Setting

8 _
v=T5-% - (6.38)

we oObserve here that Vo Trepresents the known solution of the homogen-

eous equation (3.9). The solution must be made exact by using the bound-
ary conditions that express the presence of a boundary layer and the
closeness of the channel. We finally obtain,

of [mom) - 2 sy sotue)
A\ To(ikR) X Ji(ER) + 1Ji(1kR)Jb(k§7

[%Jl(ikR) +_%§ Jb(ikRE]Jb(kr)

ToUER] X (&) + Lo, (B o) ~ * (6.39)

The tempersbure 6 msy likewise be debermined from the preceding para-
graphs and from equation (6.36). To these expressions are entirely
applicable the considerations on the complex values of the parameter k
obtained if it is warmer upward than downwerd (ch. 5, sec. 5). Because
of the transfer of heat by upward convection, this is almost required to
be the case.

We restrict outselves to the case where the temperature is still
practically constent (A = 0) along the model height. From equation
(6.36) we then find \

(6.40)

(o
l
@
o
1
D
=
N
b
S—”
N

o1 = - % )
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The Navier-Stokes equation tekes the following form:

2
- 1 dp ' r
0=-2 X3z - 8B+ gBGl(ﬁ) + VAV (6.41)

By considering the boundary layer and the closeness of the channel, its
solution is found to be

L@ @] ew

This convective process transfers upward just that quantity of heat which
covers the heat losses of the upper layers. The thickness of this layer
h of which the heat losses are made up by convection, ig obtained as

"nb
_ 8B6R 1 _
h = S X =551 (6.43)

If this thickness is of the order of the channel radius or larger, the
convection may appreciably retard the cooling of the upper part of the
casting in comparison with the lower pexrt. By taking this fact into
account, the setting phenomens may be consciously controllied (ref. 5),
and the casting spollage reduced.

In a cavity containing fluid periodically heated and cooled there,
or course, arises the phenomenon of the gravitational-thermal “detector
effect," thet is, a verticel temperature gradient srises in which the
temperature in the upper pexrt is higher then in the lower part. For
each half-cycle of cooling or heating, s convectlion occurs which carries
a definite portion of the heat upward. The accumulstion of such portions
produces the detector effect. : i

1827
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CHAPTER 7

CONVECTION IN INCLINED SLIT AS EXAMPLE OF CONVECTION
IN CHANNEL, OF A NONROUND CROSS SECTION®
1. Simplification of "Fundsmental” Biharmonic Equation

As an exeample of the theoretical investigation of laminar convec-
tive phenomens in & channel of e nonround cross section, we consider the
thermal convectlion in an infinite inelined slit f£illed with fluid and
bounded by semi-infinite sclid masses with plane parellel boundaries.

In the surrounding masses a constant temperature gradient with the fol-
lowing components is produced by an infinitely distent heat source; (l)
parallel to end (2) normsl to the slit. The system is illustrated in
figure 12. The gravity acceleration vector lies in the yz-plane.

36, ' N
3z~ &
o8
e _ _3
o 3
(7.1)
Ase =0

M_M_M_&_&_%_OJ
X" T T X"y C&

It is assumed that there is no temperature gradient component in the
external mass along the x-axis. From considerations of symmetry, it must
be assumed that there will likewlse be no tempersture gradient component
within the f£luid. Hence, there will be no velocity component along this
exis

5Th:[s chapter is compiled from data obtained by G. N. CGuk.
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aee N

> = °

®.o f (7.2)
Vx =0 Y,

Under these conditions in the laminar reglme a convective flow with
only one velocity component along the z-axis® is evidently possible

v =V,
v
==-° (7.3)
3

The equation of grevitetional thermsl convec¢tion for the steady
state then assumes the form of the linesr equations

2
0=~ + x-gE + gpe cos o + v av
o) dz -ayz
426 (7.4)
vA = 'K'-——z
ay

By analogy with the foregoing paragraphs we shall consider the param-
eters of the fluld as comstant, that is, we shall assume the parametrical

linearization of these structurally linearized equations.

Using the results of chapter 5, section 4, where the case of the
superposition of free and forced convection was discussed, we choose the
origin for =z in the section where dp/dz = O. We restrict ourselves
to the case where there is no external pump to draw the f£luld across the
slit so that only free comvection occurs, and the cavity is "closed.”
By analogy with the more complicated cylindrical case discussed in
chapter 5, section 1, we obtain : =

61t 1s clear, however, that this is not the only solution and for
certain, not as yet formulated conditions, it may pass over into others
(e.g., into a cellular Bénerd solution (see ch. 13, plate XX)).

TR2¥
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VA = - 28 cos « . dy4 (7.5)
or
94% = 1%
dy
(7.6)
ké‘ = - 5%;;06 (oA

This ordinary linear homogeneous differential equation of the fourth
order 1s easily solved by an elementary exponential substitution. After
very simple, although rather laborious computations in terms of trigon-
ometric and hyperbolic functions of a reel or complex argument, the solu-
tion reduces, with account taken of the boundary conditions, to two
gqualitatively different solutions depending on the sign of the parameter

xs,

2. Higher Tempergture in Lower Paxt

In this case the following conditions hold:

\
n* >0
~ sh ky sin ky
v ‘Vl[sh kR T sin KR > (7.7)
o - ap o . VE sh ky _sin ky
T " @ cos @ 'L|Sh KR ~ sin xR
S

On the boundery at the wall of the slit, the absence of & heat-flow Jump
(see, General Boundasry Conditions, ch. 4, sec. 1) gives

?\(g_fr)y:ﬂ = - A (7.8)

whence

3
VEY) |ch xR, cos mR| _ 2 4 (7.9)
gB cos a {sh kR ~ sin kR A :



58 NACA T 1407
The difference in temperature on both boundaries of the slit (the "tem-
persture drop") is obtained equsal to

2

2 cona 'L (7.10)

6+"9_=-4

The total hest flow upward along the slit on a segment of width X is

Q= - 2xvE ngcvk [ sh kR, _sin ZkR:] (7.11)

cos @l (an xkR)?  (sin kR)Z

3. Higher Temperature in Upper Part
In this case k% < 0. We set
lx| = +/2m (7.12)

The preceding computations give

v =v cos my X'sh my sin my X ch my
= Yl|cos mR Xeh mR gin mR X ch mR

(7.13)

9 - Az = - vkz v cosmsthmy_i_sinmchhiny_
T T gBcosa L]lcos mR XshnmR & sin mR X ch mR

The temperature drop over the width of the slit gives

2
_ vk
9+ -6_= - 4-m 'V'l (7-14:)

The transverse hest flow through a square centimeter is

2Avm® . | cos R ch R - sin mR gh wR
gp cos a 1 sin mR X sh mR

sin MR X sh mR + cos mR X ch mR
sin mR X ch mR

. _
= é%?%ﬁ vy [cth 2mR + ctg 2mR} = A, B (7.15)

T82%
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The longitudinal heat flow along the slit upward is expressed by
more complicated functions. _ .

The intermediate case, when A = 0, is solved 1n an elementary way.
From the second equation of equation (7.4), we obtain

8% _ )
aye
dag
) 7\%=-KGB L
7.16
N (7.16)
A
N y
9+-9_=—2-7\-ER
From the first equation of equation (7.4), we obtain
a%v ~ ABeB cos cz,y
dyz Av
A BgB cos «
v _ __€ 1 (2
i = X 3 (y + b) (7.17)
Bgp cos o
va- ZE——EX;—-—- (¥> + 3oy + ¢)

Taking into account the presence of the boundsry layer (v) iR = o]

and restricting ourselves to the antisymuetrical case, We eliminate the
arbitrary constants of integration b and ¢ and obtein

cos @ R
v=gB GV?\RKgB{% E— -(%)2]

_ 2 2 gp cos o 5
Q=75 XO\EB) AVX xR

(7.18)

4. Concluding Remarks

Tn a1l of the three varients discussed, making use of the results
obtained with circular cross sections, we considered only the anti-
symmetrical condlitions.
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In the first two cases we have groups of three similtaneous trsns-
cendental equaetions that connect with each other the following five pa-
remeters of the convective process: the "amplitude" of the velocity Vi,
the trensverse gradient of the tempersture in the surrounding mass B
or the transverse heat flow Ze B, the tempersture drop over the width
of the slit 6, - 6_, and the longitudinal temperature gradient A (in
terms of k and m). Thus, for the definition of the problem two of
these parsmeters must be given. In addition, the parameters of the fluid
must be known, the heat conductivity of the surrounding mags Ay, and the

width of the slit 2R. As previously stated, it must be assumed that the
only solution reflecting the actual physical process can be that which
corresponds to the smallest root kR of these equations, which (because
of their transcendental character) have an infinitely large number of
roots.

For the intermediste case, much more simple-relations'ére obtained.

[¥t44
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CHAPTER 8
EXPERTMENTAT. INVESTIGATIONS OF WATER

1. Thermel and Convective Parameters of Water

Among all possible fluids, water (Hp0) in its widespread existence
occupies an exclusive position. For this reason it msy serve as an ob-
Jject of actual production processes as well as a substance for experi-
mental model investlgation. The latter gpplication is favored because
water contains a number of singuler properties. We may here remark on
the large heat capacity of weter and the anomalous thermal expansion in
the interval from O° to 4° C. For this reason, water occupies first
place in the list of fluids capable of serving as objects of
investigation. :

Table VI gives a selection of tabulated data for water In the inter-
val from 0° to 100° C and for certain other fluids. Column 8 gives the
"econvection parameter" gB/vx, computed from these data, which enters into
meny of the preceding formulas. Figure 13 shows the temperature depend-
ence of several water perameters in the intervel from O° to 100° C. Pre-
liminary tests have shown that piped water does not differ much from dis-
tilled water in the magnltude of the parameter gB/vx.

2. Tnterpolationsl Formula for 0° to 40° C Inberval

To facilitate the computations comnected with the application of the
convection perameter at intermediste points not listed in the table, an
interpolated formula has been computed (work done by N. M. Lurye) for the
interval from 0° to 40° C. The formule represents the eguation of a
curve very accurately pessing through the points given in table VI in the
0° to 40° C interval (the interpolated Lagrange formula):

%% = 100(-20.5 + 5.0226 - 0.00706% + 0.007650° -

1

3 (8.1)
cm-deg

0.0000596% - 0.00000136°)
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3. Standard Convective Curve and Interpolated
Formula for O° to 40° Interval

As shown previously (fig. 4), the conditions for the existence of a
steady leminar convective motion in a verticel duct are equations of the
type of equation (5.15) (in the absence of a horizontal gradient) or equa-
tion (7.9), so that, .

£ = (’)*% =%§(x3‘-’c%= f(%e-) (8.2)
whence follows:
%% a6 = %Z— (8.3)
Hence
@ _aag 4
VA-HOF (8.4)

This formula gives the distribution of the averasge tempereture over
the cross section along the cavity length within the presence of a steady
laminer convective process. The origin from which the vertical distances
are computed is taken in the section wheére the temperature is equal to
0° C. Integrabtion corresponding to the interpolated formuls (8.1) gives

Ay 2 3
(-ﬁ) z = 100 {-20.56 + 2.5118" - 0.00238% +

0.001916% - 0.0000126°

- 0.000000296}cm'3 (8.5)

This formuls is valid from 0° to 40° C. It glves the standard law
of distribution of the mean temperature over the cross section in g
channel for laminar convection. It is found that the details of the
system, the channel radius R, and the relastive thermsal conductivity of
the surrounding mass (in terms of the function §4) effect only the
scale of the vertical distances z, but does not affect the shape of the
curve.

Table VII gives the coordinetes of certain points of this standard
curve.

The standard convective curve 1s & more accurate form of the approx-
imate basic assumption that the vertical temperature gradlent is con-
stant, as follows from formula (2.10). Actually, this constancy is valid
for the presence of laminar convection only over a short distance of the

TRZ%
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duct in which both the temperature and the fluid parameters remain con-
stant. The standard convective curve represents the actual law of tem-
perature distribution simplified to the linesxr by parametric lineariza-
tion in the fundsmental equations (3.1) to (3.4) and those following.

It is useful to remark that the wider the duct, the larger the scale
of the verticael dlistances proportionsl to the fourth power in the formuls
of the standard convective curve. The narrower the duct, the larger the
vertical temperature gradient and with it, the grester the possibility
of a considerable disruption of the linearity of the equations. For
appreciable flow velocities, it is found that the temperatures and £luid
paremeters in one part of the horizontal cross section differ consider-
ably from the temperatures and perameters in another part of the section.
Because viscosity strongly decreases with temperasture, it is found thab
the cross section of the rising hot stream is apprecisgbly less than the
cross section of the descending cold stream (for a "closed" duct).
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CHAPTER 9

EXPERIMENTAT, MOLDELS

TRZ%

1. Glass Model

In the course of verifying the preceding theory, a number of models
having a similar construction were investigated. The majority of the
tests were conducted with glass models f£illed with distilled water. This
kind of model is represented by a glass burette provided with a series
of thermocouples. The burette was chosen because the opening of such a
tube was calibrated with the same accuracy with which the burette was
prepared, and also because it is well known. As shown by certaln meas-
urements, the manufactured burettes are sufficiently round (i.e., have
almost the same dismeters for any azimuth). However, the degree of
cylindricality and circularity (not ellipticity) must be verified in pre- -
paring a convective model from the burette. The need for an accurate
knowledge of the model dlameter follows from the circumstance that this
diemeter (or radius) enters to the fourth power in the formulas. Hence, p
an error of 1 percent in the diameter will give an error of 4 percent in
the temperature gradient. ’

In typical experimental investlgetions, a fundemental problem is
usually the determination of the mean characteristic temperature gradient
over the cross section (and over the perimeter of the section in diamet-
rical antisymmetry) of the model. For measuring this mean gradient, the
burette is provided with aversging (over the perimeter) thermocouples
arranged as follows:

Attached to the burette are tightly soldered strips of thin wire or
foils, preferably of brass. The conducting lead from the strip is fur-
ther extended up to the switch of a galvenometer. Along several (four)
equidistant generators of the cylinder are stretched thin constantan
wires, each one soldered to each strip. In this way, each strip forms
a multiple (quadruple) thermocouple.

The difference of the average tempersatures at the points where two
strips are located 1s accompanied by the appearance of a proportional
electromotive force between the copper wires extending from the model to -
the switch. The magnitude of this EMF is about 42 microvolts per degree
temperature difference. '
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The number of these multiple thermoccouples on the burette, their
arrangement, and the distances between them are determined by considera-
tions with regerd to the object of the experimental investigation con-
ducted. These considerations are discussed in describing the experiments.

For measuring the mean temperature at each zone of The model, these
thermocouples, giving the average over the perimeter, have proven them-
selves entirely satisfactory because with thin wires, the part played by
their thermal conductivity is small, and the errors caused by the thick-
ness of the wall (if this thickness i1s uniform) are mutually compensated
for on the cold and warm slides of the model.

A heater coil 1s situated at the lower part of the model for heating
purposes. This heater consists of a high resistence insulated (prefer-
gbly ensmeled) wire wound directly on the glass of the burette. The wire
of the coil is extended by copper (preferably flexible) leads to the cur-
rent source, where the leads are Jjoined lying on the glass as far as pos-
gsible. The length of the hegting coll is from one to two outer diameters
of the model. The turns of high-resistance wire are wound as close to-
gether as possible. The resistance of the heater is chosen to suit the
voltage of the current source so that it is often necessery to make the
heater of seversl wires connected in parallel. The wire is then wound
on the burette in "multiple threads" (a term taken from screw-cutting
technology) . o R

Both wire systems, the measuring and the hesting systems, are
tightly attached to the glass of the burette by fiber bandages (prefer-
gbly of down threads).

For stebilizing the outslde temperature and the radlation fields,
the model is placed In s jJacket of a thick-walled copper or sluminum
tube from 5 to 10 times the length of the model diameter. The gap be-
tween the model and the jacket is equalized by means of centering disks
put on the model and accurately entering the inside of the jacket. This
gep 1s f£illed with pure magnesium oxide (pharmaceutical name magnesia
uste) used as a heat insulstion.

Figure 14 shows a diagram of part of the model done in sectioms.
The fiber bandeges are not shown.

For measuring the "cross temperastures" (the temperature differences
between the hot and cold side of the model in s cross section) and for
determining the azimuth of this cross temperature, corresponding “cross
thermocouples” must be used.

Figure 15 shows a diagram of a pair of cross thermocouples designed
for these measurements. Four equldistant generators of the cylinder are
placed along four elongated strips of copper foil. The weaker the
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convective phenomenon investigeted, the shorter these strips should be.
At the center of each strip are soldered the ends of thin constantan
wires extending to the dilametrically opposite strip and the ends of cop-
per wires going to the switch of a galvanometer (thermocouples I and II).
The entire system is tightly attached to the glaess of the. burette by
fiber bandages, not shown on figure 15. -

For investigetbting the distributicon of the cross-temperature gradients
along the model at an azimuth fixed by the intentional inclinstion of the
model from the vertical, severasl cross thermocouples must be arranged
along the model. While the construction of the previously described
models requires a certain experience and suiltsble care in operation, the
construction of multiple cross thermocouples requires very much more pre-
liminary and adjustment work. However, even with this method, the pro-
viding of a satisfactory model is extremely laborious, and it is still
difficult to recommend some good method (ref. 1, p. 997; ch. 11, sec. 3).

The glass models, prepared by the methods'aéscribed.preiiously, gen—'"

erally had an internal diemeter of about 1 centimeter and sometimes 0.526
centimeter (for an outer dismeter of 0.835 cm).

Tt 1s necessary to teke care that the model (notwithstanding the
presence of the heat insulating jacket) should be located in a place
where the tempersture is constant without air vents or heating installa-
tions. In an extreme case it may be located in a closet having closely
fitting doors. If these conditions are not observed, the results of
measurements are difficult to interpret.

2. Metal Meodel

For investigating convection the model used was constructed by V.
V. Slavnov and follows the fundamental features of the glass model.
Figure 16 shows the comstructional and electrical scheme of the gpparatus.
The letters a, b, ¢, and d denote the dimensions of the metal tube con-
nected with the funnel e by means of the connecting piece B. The num-
bers 1 and 2 denote two stages of quadruple thermocouples. The thermo-
couples are located on equidistant gemerators of the pipe. - Using copper
and constantan conductors of the same length, the guadruple thermocouples
are joined at special Junctions to common conductors conmected to the
change~over switch of the galvenometer. Because the material of the
tube 1g electrically conductive (and not identical with the copper or
the copstanten of the thermocouple), it is necessary to Jjoin separately
the copper and constantan conductors with the: galvenometer through a
two-pole switch, including a Junetion of fixed temperature + in the
circuit of each constantan wire. These Junctions are attache& to the
bulb of thermometer T and are individuslly insulated. As a control
one of the thermocouples 1s comnected with a thermocouple attached to

827
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the bulb of & second thermometer tz in the same mesnner. The bulbs of

both thermometers with the attached thermocouple are dipped in paraffin
and placed in Dewar flasks.

A heater consisting of high-resistence enameled wire wound directly
on the metal of the tube is situated in the lower part of the model.

The model is provided with thermal insuletion which fills the metal
Jacket.

3. Temperature Recording

The investigated thermal processes are comparatively slow processes.
At the thermsl diffusivity of water (for room temperature), about 2X10-3
square centimeters per second, and diameters of the model of the order of
1 centimeter, the duration of steady thermal processes will be of the
order of 500 seconds. At the same time, the period of vibration of the
prevalent mirror galvanometers, which must be used because of the small-
ness of the thermal emf, of the order of 42 microvolts per © C, is of the
order of 5 seconds. Thus, the recording of the readings of one thermo-
couple by one galvanometer is excessive. Roughly spesking, this is equi-
valent to obtaining over a hundred readings during cne process.

However, the specification of the thermoelectric recordings requires
constant checking of the zero position, and the specification of convec-
tive processes requires the recording of temperatures at certain points
of the model (close analogy with synoptics). Hence, it is entirely nat-
ural to determine somewhat the smount of accuracy in order to gain con-
siderably in reliability and clarity. _

The widely epplied method of recording the readings of several ther-
mocouples consists in the successive recording of the readings™of differ-
ent thermocouples by mesns of a single galvanometer. The galvanometer is
switched from one thermocouple to another in a time interval during which
the galvanometer pointer succeeds Iin reaching s new position and record-
ing this position on the photographic plate. ’

Naturaelly, the requirements on the aperiodicity of the gelvanometer
must here, be raised end the choice of the critical resistance requires
careful sttention. A change in sensitivity cannot be attained by shunt-
ing the galvancmeter alone, or by merely increasing the added resistance
in the thermocouple circuit. Both these magnitudes must be varied in
such a manner that the resistance of the extermal circuit of the thermom-
eter does not change and become equal to the critical resistance.

If the resistance of the galvanometer is denoted by p, the critical
resistance by Rg, the resistance of the galvanom@ter shunt by =, the
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added resistance in the thermocouple circuit by R, and the relative low-
ering of the sensitivity (through the voltage) by n, we obtain the fol-
lowing two equations with the unknowns r and R:

., 1_2L
r R Rg
.2 (9.1)
T T =
E—ET— (R + EE:_ED n(Ro + p)
0

The first equation of these equabtions expresses the requirement that
the external circult of the galvanometer must always have a critical re-
sistance. The second equation of these equations comnects the required
magnitudes with the relative lowering of the semsitivity n. If the sec-
ond equation is multiplied by the current giving unit deflection of the
galvanometer, it expresses the requirement that this unit current should
occur for the shunted galvenometer (left side) for n times the voltage
(right side), as against the nonshunted galvanometer.

Solving these equations, we cbtein the following convenient formulas:

R = nRy
(g8.2)

_ . n
T=a-1 Bo

The formulas show that by carefully determining Ry it is possible to

choose the shunt r and the added resistance R for any lowering of
the sensitivity of the gelvanometer n.

As s switch for the gelvenometer the step selectors used in the
automatic telephone station are recommended. These selectors have sev-
eral stages containing from 10 to 30 contact segments and also give &
wide combingtion possibility. Near the model the selectors require a
secure arrasngement in removaeble Jackets which help to protect them from
dust. The contact surfaces of the segments and the springs must be wiped
occasionally with a cotton cloth, wet with alechcl. Glazed paper or
emery cloth must be entirely avoided. ’

The leads from the thermocouples should be goldered to the segments.
Since there are a large number of these leads, it is necessary to arrenge
the model closeé to the switch. It is recommended that the leads be made
of multiple-strand wire resulting in a flexible braid of enameled copper
conductor of approximately O.4-millimeter diesmeter contained in a filber
breid. This braid may initially be drawn together with a piece of light-
ing coxd.

182%
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It is recommended that the thermocouples be comnected to the seg-
ments in such a manner that the successive switching of the segments
would be accompanied by the successive recording of the fluctusting tem-
peratures (i.e., in the course of a cycle the recordings of the cases of
temperature rises should be grouped together, and the cases of tempera-~
ture drops should also be grouped together, so that the transition from
the rising to the lowering temperatures will occur as infrequently as
possible, no more than once per cycle). This requires great care in
marking the ends of the multistrand wire before soldering the ends of
the wire to the thermocouples and segments. The observance of this rule
greatly increases the meaning of the photorecordings. ' R

The step selector is subjected to the action of an electromagnet.
The connection of the electromagnet is effected from the contactor of
the control cam disk, located on the shaft of a Warren motor. In pre-
paring the contactor, it is advantageous to make use of semifinished ma-
terial such as that used for the telephone spparatus.

The breaking spark of the electromagnet circuit produces rapid wear
of the contacts. The safe wear of the electromagnet of the step selector
requires power of the order of 20 watts, maintained for a short time.
Hence, depending on the source of the current brought to act on the elec~
tromsgnet, varicus schemes are recommended for retarding the wear of the
contacts.

For low voltage sources of current (a battery of 4 to 4.5 volts)
the electromagnet must be wound with enameled wire of an approximate
dlemeter of 0.6 millimeter, altogether, gbout 400 turns and sbout 1 ohm
resistance. Here, it 1s recommended o use the contact device with
which the armasture is usually provided, as is shown 1n figure 17. At
the instant the current circuit is closed by the cam disk of the Warren
motor (working contact 1), the armature of the electromasgnet of the step
selector has not yet opened the block contact 2, shunting the added re-
sistance of sbout 10 ohms. A total current of the order of 4 to 5 amp-
eres, sufficient for the instantaneous operating of the step selector
(switching of the galvanometer to the following thermocouple), passes
through the winding electromesgnet. Conbtact 2 opens practically without
a spark, and through winding electromsgnet & current of about 0.5 ampere,
gufficient only to hold the electromagnet armsture in the attracted po-
gition, starts to flow. The armebure drops when contact 1 opens, and
like contact 2, occurs practically without a spark. The very slight
residual spark may be eliminated by shunting the electromsgnet with a
resistance of approximately 100 ohms.

In this low-voltage scheme it 1s necessary to pay great attention
to the condition of the contacts. It is particularly harmful to use oil
which may find its way from the motor to contact 1. It is recommended
to wind high-resistance wire (a resistance of 10 to 100 ohms) on the
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bobbin of the electromsgnet and, thereby, avoid excessive construction
detgil.

With & high-voltage current source (e.g., a hard rectifier of 300
volte), it is recommended to bring the electromsgnet into action with s
condenser, according to the scheme of figure 18. The center of the fig-
ure shows a typical (selenium) rectifier. The center of the rectifier
is connected with the phase wire of the city current through a block con-
denser. The capacity of this condenser 1s conveniently chosen because,
in the case of a faulty circuit, it should serve to limit the current,
and thus protect the rectifier from overbeating. For example, for a lim-
iting current of the rectifier of 40 milliasmperes, 1ts capacity should
be chosen of the order of 1 microfarad.

TRV

The rectifier charges the main condenser of large capacity (electro-
lytic). The size of this condenser is chosen experimentally as a function
of the parameters of the electromagnet. This scheme is not exacting re-
garding the parameters of the electromagnet but functions well with elec-
tromagnets containing & greatly differing number of windings and, there-
fore, having different resistances. The higher the number of windings,
the smaller the capacity of the condenser sufficient for good operation
of the scheme, but the more destructive is the breaking spark in working
contact 1. The closing contact spark does not strongly affect the work-
ing contact.

In the regulatlion of the step selector it 1s necessary to note care-
fully that the operation of the electromsgnet should occur instantly and
rapidly, and it should also be accompanied by the Jumping of the contact
springs as far as possible from the center of one segment to the center
of the nelghboring segment, and so on along the entire selector.

The wires to the photo recording gelvanometer may be sufficlently
long, and the galvenometer itself can be situsted in the photo
laboratory.

Further on, examples of photo recordings will be given. On the lat-
ter, the recordings of the same object serve as indicators of the time.
The distance between the recordings corresponds to the lag of the switch
multiplied by the number of segments or objects recorded. On many of
the recordings flaws, ejections, gaps, and scallops will be found. These
imperfections served as reasons and material for the previously discussed
gulding remarks.

4. Investigating Thermal Parsmeters of Model
The early theory of the thermal convection of a round channel con-

nects the parsmeter of thermal convection (the critical vertical temper-
ature gradient A) with the thermal conductivity of the surrounding mass
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N (see fig. 4). Hence, where the experimental investigation verifies

this theory it is necessary to compare the results cbtained with this
value of the thermal conductivity of the surrounding mass, equivalent
to the corresponding parameter of the given model. ’

Although the thermsal properties of the materials of which the model
is made may be known, the construction of the model is, nevertheless,
sufficiently compliceted. Hence, the computation of the equivalent
thermal conductivity may not be theoretically reliable. Thus, there
arises the constant requirement of a method for directly determining
the over-all thermasl parameters on the model, one of which is the equi-
valent thermal conductivity of the surrounding msss.

The preceding method is based on the photorecording of a special
thermal process occurring in the gir-filled model. This specisal process
is produced by & small heater coil, heated by a constant current and
drawn inside the model from end to end with a constant velocity with the
aid of =z special pile-driver arrangement. --

The heater (fig. 19), is constructed in the following mammer. On
a glass tube 120 millimeters long and 1.0/3.0 millimeter in diameter a
red copper pully (2) is securely mounted. The groove of the pully is
filled up to the edges with coil 3 of constantan wire, which constitutes
the heater itself. The diameter of the pully is such that it fits in-
side the model, almost without friction. A double copper wire frxrom the
heater of the meke PShDL with a 0.21-millimeter diameter serves, at the
same time, as & lifting cable. The heater entered into the vertically
arranged model under the action of its own weight, increased by a lead
welght, not shown in the figure. The csble is sttached to the drum of
the photorecording spparatus thus serving similtaneously as a pile-
driver mechanism. Hence, the wvelocity of motion in the duct of the
model is equal to the rate of the photo recording.

Figure 20 shows schematically the model investigabted and the Jjunc-
tions of the thermocouples to the swibtch segments where T denotes the
tube of the model, A +the aluminum Jjacket, M the charge of magnesium
powder, insulating the model from the Jacket, and P +the moving hester.
The dotted lines denote the congtantan Wires of the thermocouples.

The equation of heat balance applica.ble to an element of the tube
length dz (fig. 21), may be written —-—
3% 3p
pchz§—+21LRla.dze—7\lSa dz + <= dz (9.3)
72
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where p is the density of the material of the pipe; ¢, tThe heat cépac-
ity; »; ‘the heat conductivity; S, the cross sectlon of the tube wall;

2Ry, the outer diameter; 6, the temperature of the tube element dz aver-

aged over the volume; P, the power input of the heater; and o, a coeffi-
clent charscterizing the heat transfer from the tube to the heat
insulation.

Collected on the left side of the equation are the terms character-
izing the heat loss 1n the heat capacity of the element and in the heat
losses; collected on the right side of the equation are the terms char-
acterizing the heat gain through the thermsl conductivity of the wall and
the heater. Dividing by 4z, bearing in mind that the power P of the
heater moving with velocity v i1s a function of the argument (t - z/v),
and regrouping the terms, we obtain - )

2
Klsg—g-pcsg-g-ZﬂlaG=-§§
% (9.4)
P=P(t-—z-)
v
We set B
X=1 - 2
=
dz = - v dx (9.5)
P = P(x)

and seek to cobtain the solution of this nonhomogeneous, linear-partial
and differential equation with constant coefficlents in the form

FAR
e=e(x)=e(t-;)
%%:9' . } (9.8)
3% 1
w T ES

This substitution gives the following ordinary differential eguation:

2
o . pcvz o1 - Zﬁlev o= . XE
M MS AS

(9.7)

LS

TRZ%
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This linear but nonhomogeneous equation with constant coefficients may,
in our case, be reduced to a homogeneous equation. Because the axisl
dimenions of the heater are so small that it may be considered as a point
source of heat. The function P(x) will, therefore, be zero everywhere
except at the point where the heater is situasted st the given moment
("delta function™). At this point, the entire power P of the heater

is produced. Thus

when x # O
oP )
*x=0
when x = O ? (9.8)
3@
= & =%

Equation (9.7) for all values of x, except x = O, assumes the
form

2 2R~ o2
v - B - ——7%§—— 6=0 (9.9)
1 1

We shall seek a solution in the following form:

6 = gpe® (9.10)
whence, after substituting in equation (9.9), we obtain
2 20R. av?
q? ey 1 _ o

N 2 A5

(9.11)

(9.12)
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wvhen x <O
CARS h
6 = eoe -
1g6 = 186y + qixlge . - >
9.13)
g0 _ales _ _ . _ (
ax - ab = q;lge O.4345ql J ~
when x =20 ,EL:P’.
8 =6, (9.14)
when x>0
X
e = eoeqz
(9.15)
algd _
o O.4=543q2
when X = tw
86 =0 -
6' =0 (9.18)
9" = o

The trend of the curve 6 = 6(x) is shown in figure 22, or in semi-
logarithmic scale, in figure 23. ' )

The entire heat, obtained by the tube from the heater, is, in the
final analysis, expended only in the heat transfer characterized by the
parameter «o. Mathematlecally, this corresponds to the following: in-
tegrating each term of equation (9.3) between the limits -» 0 4w,
we cbtain -

+oo +oo0 +0 (2
29 - 3%
\//1 pcS &7 4z + 2nR)a 9 dz = A;S z dz + By (8.17)
-0 -0 -0 Z
+o +c0 7\lS +00
~-vpcS u/w 0'dx + 2mR,a 6 dz = - ~=- 6"dx + Py (9.18)
-00 ' CO -Q0
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+o0
+ P

-00

+oo o 7\13
+ 2Ry 6 dz = - == @

- (9.19)

-vpcSe 0

-00 -0

Because of the relations (9.16), the substitutions give zero. Hence,

0
o = = (9.20)
27R 6 dz

-C0

Moreover, from equations (9.13), (9.14) and (9.15) there is obtained

-+o0 0 L +o X
6 dz -V 6.e ax - v 6~ dx
9) 9)
-C0 -0 O

(9.21)

il

[0}

A
—
I

4.

]
Sl

Having experimentslly determined the form of the function 6 = 6(t) for
z = constant by photorecording and having measured the photorecord of

figures 22 and 23, the integral may be cbtained by the direct summation
method of 6 = 6(z) as well as by the (check) computation method in terms
of the slopes of the curves g and q,. Thus, the expression (9.20)

permits determining the first thermal pasremeter of the model a charac-
terizing the heat losses. ——

We recall that it is connected with the thermal conductivity of the
insulation A, by the relation (ref. 2, p. 27), so that

Zm:R 2:0\22\
ﬁ > (9.22)
Rp
Ay =RjalIn R,
.,

In this formula, RZ denotes the inside radius of the jacket A in fig-
ure 20, having a constant (room) temperature.



76  NACA TM 1407

From equation (9.11) there follows

ZTERJ_G,VZ h
Qs = - —5 g
(9.23)
ZJCRlOSVZ >
M= g () y

pcvz
A Tt

A (9.24)

== ( ) = Zrof L1
pe =22 ‘41 * 9/ T "5 | gy " qy

Equations (9.20), (9.23), and (9.24) give the complete solution of
the problem of the experimental thermsl parameters of the model.

Figure 1! gives an example of an asutomatic record similar to those
of figures 22 and 24. Its evaluatlion is similar to that of figure 23.
The symbols A, @, 0, and O in figure 24 denote the poinkts of the aver-
age curves of the photograph obtained in moving the heabter upward in the
model, and the crosses denote the points of the photograph obtained in
letting the heater move downward. The motion occurred with constant
velocities. All the curves are drawn in such a menner that the maximum
ordinate corresponds to zero on the axis of abscissas.

As may be seen, the form of the curves on figures 23 and 24 is the
same. Measurements on the graph of figure 24 gave the followling values:

1

— = 470 sec
9
(9.25)
1
—— = 1150 sec
_qz

The measurements of the three curves on the same photograph (fig. I),
gave the following value:

- |
u/q 6 dz = 0.242 }Z: 6 = 9;§é%§%1§;§ = 22.2 deg cm (9.26)
-0 . )

7The‘ figures denoted by romen numerals refer to the photographic
records. ,

T82%
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In this record, 0.242 centimeter is the linear length corresponding to
one work cycle of the switch (distance between the photo marks), and

8.4 millimeters per degrees is the sensitivity of the galvanometer deter-
nined by means of the gradusted record; the upper horizontal series are
the points corresponding to 0.300 millivolt, that is 7.15° C. The num-
ber of 773.5 millimeters is the sum of all the ordinates of the photo
record.

The computation check by formula (9.21) gave

+co
6 dz = 22.4 deg cm (9.27)
-0

The record was taken for the glass model of 11.28/13.28 millimeters
in diameter for a hester power of 0.0532 watt = 0.0127 calorie per second.
By formulas (9.20) the following average value is then obtained:

@ = 1.46x107% cal/deg sec cm® (9.28)

It should be remsrked that of this number, the proportion falling to the
signal copper (7\ = 0.9) wires of 0.41-millimeter diameter with cross-
sectional area 0.00132 sguere centimeter, at & distance of 6 centimeters
from each other along the model length (each of them 1.68 centimeters
long to the jacket) is

_ 0.90%0.00132 _
= TEnR;XBRL.68

0.28x10™% cal/deg sec cm? (9.29)

By formuls (9.22) the following is then obtained for the thermal conduc-
tiviby of the magnesia:

A2

0.62(1.46 - 0.28) x 1074 x 1.27

1.00x10™% cal/deg cm (9.30)

(The thermal conductivity of the air at 20° C is 0.60%07% cal/deg-cm).
By formuls (9.23) for the thermsl comductivity of the model, there is
obtained after substitution

0.00311 cm/sec; S = 0.38 cm® 3

@R, av?
8q; (~q)

_ 3.14x133x1.46x1074(0.00511 ) 3x470X1150 (5.31)
= 0.38 '
¢

= 84X10™™ cal/deg cm
31.8%0% cal cm/deg )

v

N

v

NS
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The molecular thermal conductivity of the water in the model channel is

14x10~% calorie - centimeter per degree (i.e., less than half the thermal
conductivity of the walls).

It should be noted that of this number,-ﬁﬂé prqpcrtion falling to
the four constantan wires of diameter 0.21 millimeter is

A'S' = 4 X 0.054 X 0.000345 = 0.75%X10~% cal cm/deg (9.32)

The corrected value for the glass is, therefore, dbtained.as follows:

]

A8 = 31.0%107% cal cm/deg

M

If formulas (5.27) are considered, then, for the models of
11.28/13.28 millimeters in diameter of the same kind of glass with which
the mejority of the tests were conducted, it 1s found that the thermsl

conductivity of the equivalent surrounding msasse Ae 1s cbtained equal

to 0.00141 calorie per degree - centimeter (i.e., of the same order as
the thermal conductivity of the water). Thus, for these glass models,

we have approximately A = A,.

(9.33)
82x10~% cal/deg cm

By formuls (9.24) we obtain

pc = 1.64 cal/deg cm® - (9.34)

Bydrostatic weighing gave ¢ = 2.59 grams per cubic centimeter. The
thermsl capacity of the model glass is them c = 0.63 calorile per degree

squared.

In the carrying out of this method, the following especially impor-
tant difficulties require careful attention.

Tt is necessary that the heater actually be a "point" source (i.e.,
that the axial dimensions of the heater should not exceed the radlal
dimensions). With a heater three times the diameter length, good record-
ings were likewise obtained but their interpretation presents extreme
difficulties.

Each of the upper set of thermocouples registers a rise in temper-
gture when the heater passes by the lower thermocouples and registers a
lowering temperature, even in comparison with the Jacket, in the inter-
mediate positions of the hester. The phenomenon is eatly weakened
when the upper part of the glass tube of the heater %ﬁig. 19) is wound
with & wool filement over its entire length almost up to the inner
diameter of the model. 'This difficulty is evidently caused by the con-
vection of the air in the tube over the heater. Hence, to remove the
air, it is expedient to arrange the model horizombally. -

TRZY
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This method has a number of defects that lower its relisbility.
The thinner the model wall as compared with its diameter, the more hesat
conducting its material as compared with the heat insulation; the thinner
the thermocouple wires, the more reliable is the method and the higher
the qualtity of the Investigated model.
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CHAPTER 10

EXPERIMENTAL INVESTIGATION OF FREE THERMAL CONVECTICN IN VERTICAL
MODELS OF ROUND CROSS SECTION FOR STEADY REGIME

1. The Two Regimes of Thermsl Convectlon and
Theixy Dividing Critical Poilnt

Numerous mesasurements, cobservations, and photorecordings carried
out on different vertical models have led to the conclusion that for a
moderate hesting by & heater coil, situasted in the lower part of the
model, a convective motion of the fluid arises in the model. 1In i1ts
fundamental features, this motion is correctly described by the pre-
ceding theory. -

The details of the observed phencmena are the following: After a
moderate current is established in the heater circuit, the temperature
distribution along the model undergoes more or less strong changes at
. first (see ch. 11). These changes gradually cease after the elapse of
a certain time, and a definite steady temperature distribution is estab-
lished. This distribution is characterized by an almost constant ver-

tical temperature gradient along the model.8

The magnitude of this gradient within broad limlts does not depend
divectly on the power input to the heater (table VIII) and only slightly
changes with the tempersture of that part of the model where the gradient
is messured; on raising the temperature, the gradient decreases. The
sense of the temperature gradient is alweys such that it is warmer below
the gradient than above.

Thus, the phenomenon of convective heat transfer by a fiuld in a
vertical tube differs from the molecular heat transfer in solid bodies
in the following propertiles: (1) by the practically constant gradient
along the model, and (2) by its independenmce of the power input of the
heater.

8If the fluild would solidify, the constant gradient along the model
would change into a gradient decreasing by the exponential law (fig. V).

TRZ¥
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Figures V and VI compare examples of photorecordings of the temper-
ature distribution along a model through convection, and in the case
where the fluid is replaced by a brass rod tightly fitted into the model.
The upper curve gives the temperature of the lower, warmest thermocouple
(teble VIII, pts. I and II).

Check tests established that this regime corresponds to the laminar
motion of the fluid. Figure II shows a photograph of the path of the
particles of eluminum powder suspended in water in the model, and illum-
inated from the side. The photograph shows how a flow with axial symmetry
inside the hester is arbitrarily formed over the model length in the flow
with diametral antisymmetry: on the right the werm fluid rises, on the
left, the cold fluid descends (fig. ITI shows a photograph of the upper
part of the same model).

JFor very small heating power inputs in the model filled with fluid,
as in the case of a s80lid body, an exponentisl law of temperature dis-
tribution is observed. This law is valid only Iin those parts of the
model where the temperature gradient has nobt reached the characteristic
magnitude. It is necessary to assume thet for these small powers there
are no corresponding gradients of the convective motion, snd the non-
moving £luid behaves like a solid body. At each part of the model, the
temperature gradient is proportional to the hemting power.

Likewise, when & greater current flows into the heater circuit, =
more or less violent nonsteady regime, changing rather repidly to a new
regime which only with reservation mey be called steady, is observed at
first. The temperature recording is now uneven and reveals erratic flue-
tuations. The vertical gradient of the temperature undergoes Jumps (at-
taining 30 percent of its mean value). This mean gradient is practically
proportional to the heating power at each part of the model.

By check tests using the suspended aluminum powder, it was found
that the convective flow now has a bturbulent structure; the scale of the
turbulence being of the order of the channel dlameter of the model.

Thus, for small vertical temperature gradients the fluld 1s eppar-
ently stationary, the heat transfer along the model probably was deter-
mined by the molecular thermal conductivity. On atbtaining the charsac-
teristic temperature gradient, a laminar convective fluid motion arises
which is capable of transfering large thermal powers in a relatively
wide range of these powers. To exceed the characteristic gradient
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is possible only at the expense of disrupting the laminar motion of the
fluid, that is, at the expense of rendering the flow ’curbuleni',.9 The
thermal properties of such turbulent convective flow resemble the prop-
erties of & solid body.

From the preceding considerations it is seen that the characteristic
gradient has the following criterional velue, namely, that the character
of the fluild motion 18 determined by the magnitude of the gradient. Be~
low this gradient, the fluid is calm, its flow being laminar, while above
this gradient the flow beccmes turbulent.

9F‘cr contrast we recall the conditions of laminar flow, namely, the
equation of a streamline must not contain the time in explicit form. The

equations of a streamline are as follows:

ax _dy _ dz _
Ve vy Vo,

oxr
ax _ Vx '
&y - vy,
az _ Yz
ay Vy

t\v, ) St\vy V§ V2
then
=
Vy —'vy T vy,
or

dlnvy dlnvy Jdlnv,

i St =8

For steady laminar flow, @ must be equal to zero.

1827
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The characteristic gradient determines the hydrodynamic critical
point: a sharp qualitative change in the chsracter of the fluid motion.
The turbulent filuid motion may be characterized as above the critical.

2. Constancy of Value of Convection
Parameter in Laminsr Regime

Numerous measgurements of photorecords snd other measurements have
shown that the convection parameter, equation (5.16)

g4 = (xm)t - EBAR" (10.1)

Y

actually possesses an almost canstant value, as defined by formule (5.15),
figure 4, and teble IT. For example, for glass models this value is
approximately equal to 100. Considering the previcus statement that for
glass models the ratio 7\e/?\ was found to be approximastely 1, we arrive

at the conclusion that formula (5.15) satisfactorily applies to glass
models (table VIII).

Careful messurements, carried out by V. V. Slavnov on & brass model
filled with water gave the value §4 = 186+2. The corresponding value
of the thermal conductivity of brass lies within the limits of the tabu-
lated vaelues. The preceding findings show that formula (5.15) is also
sufficiently accurate for metal models. In particular, it is entirely
evident that with an increase in the temperature, the parameter gB/vx
increases; the vertical ten%erature gradient A should decrease so that
the convection parasmeter ¢ maintaeins its critical value.

3. Quantitative Characteristic of Above-Critical

Regime of Thermsl Convection

As an orienteting cheracteristic of the guantity of heat transfered
by convection in the gbove-critical regime, we employ a provisional mag-
nitude defined as follows:

N = —2 (10.2)
TRENA

where @ denotes the heating power; A, the time aversge of the temper-
ature gradient for the above-critical regime and the remaining symbols
have their previous mesnings. If Q dJdenctes the thermal power trans-
ferred by convection at & given section of the model (where the gradient
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is equal to A), the expression (10.2) could provisionally have been de~
noted as the Nusselt number Nu*¥* applied to heat transfer through con-
vection from the low-lying parts to the high-lying parts of the model,
from fluid to fluid (eq. (5.17)). The accurate meaning of the Nusselt
criterion refers to the transfer of heat from a solid body to a fluid,

or conversely. Thus, the parsmeter Nu¥ in the preceding expression
has, to a large degree, a provisional character. Nevertheless, from
several series of tests with different glass models it was found that

the values of Nu® for the above-critical regime have a relatively small
scatter about a mean value. Figure 25 shows the results obtained to a
large scale, the different symbols corresponding to different models in
different tests. As seen, the points arrange themselves about two inter-
secting straight lines where the vertical line corresponds to the laminar
regime and the horizontal line to the above-critical regime. Figure 25
also shows, to a small scale, the relation between the previously men-
tioned intersecting straight lines, curve I, and two known functions of
the true Nusselt criterion for the cases of transfer from a solid body to
an unlimited fluid, curve II, and thro uih a liquid layer, curve III (as a
function of the convection parsmeter &%)

From this graph the following conclusicns may be drawn:

(a) Although Nu® is of & provisional character, its approximate
independence of the convection parameter §4 in the sbove-critical regime
reflects an analogy of the thermel properties of the fluid in this regime
with those of a solid body. (See initial part of curve III).

(b) The disposition of curve I is in striking comtrast to that of
the known curves II and III. This contrast corresponds entirely to the
different meanings of the parameter Nu®* and the true Nusselt number

Nu.

(c) The numerical value of Nu™ (1460+80), determined from the data
of table VIIT, is undoubtedly much larger than the value of Nu*¥* having
a better defined physical meening. The value of Nu® must be considered
as an upper limit of the possible values of Nu¥¥* (for the glass models

investigated; see also formula (10.10)).

4. Presence of Transverse Tempersture Gradients
and Results of Their Measurements

One of the most important indicsations of the laminar comvective ther-
mal process described by the formulas of chapter 5, section 1, is the
fact that in this process one side of the model is warmer than the other.
The experimental verification of this is of great slgnificance in estab-
lishing the relisbility of these formulas.

182%
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For measuring the transverse gradlient, it-is necessary to provide
the model with transversely situated thermocouples as described in chap-
ter 9, section 1. The meassurement of the transverse temperatures was
carried out close to the critical powers. Under these conditions, the
model represents a good heat conductor. Hence, the role of the heat in-
sulation becomes small so that tests were conducted on glass models sit-
uated in gir, without any special heat insulation.

It is convenient to compsre the measured transverse temperature dif-
ferences with the vertical characteristic gradient and to express them in
terms of a number of model diameters over which the horizontal difference
is equal to the vertical. Such "relative" transverse temperature differ-
ences expressed in model diameters have g definite physical sense for the
laminar regime. From formule (5.5) and related formulas, it follows that
the transverse tempersture difference is equal to

vi?

8 -6, p=6,-6_ 2><2><-—vl . (10.3)

r=+R

The "relative" transverse temperature difference will, by definitiom, be
equal to
6, - 6. ol
24AR gBAR

(10.4)

On the other hend, from formules (5.10), (5.17), and {(10.2), we obtain

Nu¥¥ = ﬁpcv{} { } ~ (10.5)

11‘.'R ?\A ZgﬁﬂR M 2 BA’CR

where the braces denote the same expression that sppears in the braces
in formula (5.10). Eliminating the magnitude vy Zfrom the equations

(10.4) and (10.5), we obtain

{ } (9+ - 9-)2 » {epAR)%
ZAR £

41121:
2
={_} % (EL_G_‘) (:!_o,s)

Thus, the thermal power transferred by the laminar convective flow
is proportional to the square of the relative transverse temperature
difference.
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For glass models, when %e = A, E=kR = 3.2 and 54 = 100, the
expression In braces in approximately equal to 30.3. Hence, approximately

o o, - 8_\? i
N "~ 4| e (10.7)

If formulas (5.22) and (5.23) are used, and the transverse temper-
ature difference ee+-ee_ is computed on the outer surface of the glass

model, then for Az << A, 0e1=6c- 1s almost equal to or somewhat less
then 6, ,-0_: '

Oep = O™ 6, - 6_ (r0.8)

Substituting the outer trangverse temperature difference ee+-ee_
for 6+-6_ in formuls (10.7), we shall obtain a somewhat lowered value

for Nu

The measurements revealed very consildereble outer transverse temper-
ature differences. For example, in a model of about 1.2/1.0 centimeters
in diameter for a heating power of 0.168 calorie per second, a relative
outer tempersture difference of 10.4 tube diameters was found, corres-

ponding to,

Nu™ = 430 . (10.9)

At the critical hesting power on the boundsry of the trensition from
the laminar to the sbove-critical regime s "maximsl" transverse outer tem-
perature difference of 15.5 diameters (1.3° C absolute) was obtained,
which gives & value

N*¥ = 960 (10.10)

This number is to be considered the lower limit for the Nu*  nunber pre-
viously computed fram other considerations (sec. 3).

Further measurements showed that small deflections of the tube axis
fram the vertical increased the transverse temperature difference. Since
these deflectioms simultaneously increase the critical power, they slso
increase the maximal value of the transverse difference. For example,
for an inclimation of the exis of the model of 5.75° from the vertical,
the maximal (below-critical) transverse outer tempersture difference was
obtained equel to 2.0° C or 24 Qiameters. Hence, for an inclined model,
Mu¥** « 2300 (ch. 17, sec. 4).

827
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All these measurements are related to the ma Elt es of the trans-
verse temperature gradient. )

5. Fluctuation of Azimuth of Transverse
Temperature Gradlent

It was established that the azimuths of the transverse temperature
difference (fig. 6) are more or less sta.ble only for an inclined model.
For example, gt an inclination of 5. 75° and a heating power of 0.168
calorie per second (laminar regime), the probsble inclinations of the
azimuth, as a result of numerous measurements, were approximastely £1.7°
of an arc. For the same inclinstion at the above-critical regime (heat-
ing power 0.68 ca.l/sec), a probsble inclination of +11° of an arc was
obtained. The sign of the transverse difference in the inclined model
corresponds to the originel assumption that the upper side 1s wermer than
the lower side.

For a vertical model, the azimuth of the transverse temperature dif-
ference is very unstable even for the laminsr regime. Rasndom arrangements
and arbitrary rotatlons of the plane of diasmetral symmetry are observed.
For example, figure 26 shows the veriation with time of the relative outer
temperature difference, comsidering its azimith. In figure 26 the simul-
taneocus values of the relative transverse temperature difference (ex-
pressed in dismeters and cobserved by means of both sets of thermocouples)
are laid off on the coordinste axis. If these values are cambined by the
parallelogram rule, then with each palr of such values a definite direc-
tlon of the vector of the relstive transverse temperature difference may
be associated. This direction coincides with the normsl to the plane of
antisymmetry whose length more accurately describes the transverse temper-
asture difference than each of the separate components. These values were
taken into considerstion in the preceding discussion.

The preceding figure (fig. 26) shows in a half hour how the trans-
verse temperature difference described almost the entire surroundings
(the marks were made after each minute of time).
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CHAPTER 11

EXPERIMENTAL INVESTIGATION OF UNSTEADY REGIMES OF THERMAL
CONVECTION IN MODELS COF ROUND CROSS SECTION

1. Theoretical Consgiderations for Steady Process

Figure 27 shows a gegment of & channel model. For imperfect heat
insulation of this segment, the part of the heat qy = pcevZ transported

by convection downward from the source will be greater than the part of
the heat dp carried upward, so that a part of the heat q' will pass
through the heat insulation over the length of the segment. Hence, the
curves d, v, and & at the upper boundary of the channel segment will
be below the corresponding curves referred to the lower boundary of the
same segment. TFor this reason, the part of the streamlines of the con-
vective flow from the rising stream (on the right) will bend into the
descending stream (on the left). At the central section the fluid veloc-
ities, though small, are not zero, and are directed horizontally. The
theory of this phenomenon is discussed in chapter 15, section 5.

Experiment confirms this theoretical picture. Figure III shows a
photograph of this convective flow which was made visible by adding to
the water a certain amount of aluminum powder brightly illuminated from
the side. A thin-walled glass tube with a dlemeter of 38 to 40 milli-
meters, without any heat insulation and heated at its lower part, was
used for the model. The photograph shows the bending of the streamlines
both near the cold top and along the model according to the scheme of
figure 27 (fig. II).

Since in a leminpar convective flow along the model & constant mean
temperature gradient over the cross section is established, both this
mean temperature and the heat. losses through the imperfect heat insula-
tion q' are a linear function of the vertical distances =z along the
model. The heat expenditure required to cover the losses from the top
of the model to a given sectlon 2z 1is a guadratic function of the dis-
tance z. The total heat supply @Q covering these heat losses 1s also
a quadratic function of 2z. Hence, the velocity v is again a linear
function of the distance

Vo= v+ — (11.1)

z
m —

T82%
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The origin from which the vertical distances 2z are computed is
laid in the section where the convective motion ceases. Beyond this sec-
tion the heat transfer continues, but this condition is probably only due
to the molecular thermal conductivity of the fluid and of the model walls.
This process corresponds to the transfer of heat through a solid rod, and
the corresponding temperature is an exponential functlion of the distance
%z. The cambining of both laws occurs for =z = 0 under the conditions of
continuity of both the mean temperatures and the thermal flows (i.e., the
temperature curve in this case has neither a jump nor a break).

FPigure 28 shows the previcusly described distributlions of tempera-
tures and veloclities to the correspondingly chosen scales. Above the
point 2z = 0, the exponential law of temperature change combines with
the sbsence of the convective veloelity . ’

Between the two sides of the model, where cos ¢ = 41 and the ve-
locities of the rising and descending flow are respectively maximal, the
following transverse temperature difference is observed:

8y - 6_ =4 ar ¥ (11.2)
Hence, on the same figure it is possible to represent 6, - 6. by
the same straight lines as v 1in a correspondingly chosen scale.

On the basis of equation (11.1) the effective path of the thermal
flow for an infinitely small time interval 4t may be compubted, so that

dz = vdt A (11.3)
= YV = 7 - . .
Zm

By integrating this equation, the dependence of the path traversed
by the flow as a function of the time can be determined:

dz Zm P Jm
f'?:an:ln v;;):ln[w(e.k—e_j '—z;:(t"tm)

(11.4)

From this formulse it follows that the time +t required for the con-
vective flow to reach section z 1is a logarithmic function of =z, v, or

(6, ~ 6_).
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2. Fundamental Differences in Unsteady Regimes in Presence
and in Absence of Convection

In order to investigate nomsteady regimes, the electric heater of
the model was connected to a storage battery through a program switch.
This switch consisted of a separate telephone selector, successively dis-
connecting and connecting, thereby adding reslstance in the heater cir-
cuit. The sections of this added resistance were chosen so that the
power of the heater varilied epproximately in the ratios 0:1:2:3:4:3:2:1:0.
The heating power corresponded to 0; 0.012; 0.025; 0.040; 0.054, and so
forth, calories per second. Esch stage was maintained for 3 hours. Fig-
ure IV shows an example of a record.

For camparison, figure V shows a similar record where a tightly fit-
ting brass rod was introduced into the burette in the place of water.
The power at each stage was maintained for 2 hours. Comparison of both
photographs shows that the phenomena of convective heat transfer differ
from the corresponding phencmens of the molecular hest transfer in a
solid rod.

In the steady regime, the difference consists in the fact that the
temperatures (distances of the horizontal segments of the curve from the
zero line) of different thermocouples follow, for convective heat trans-
fer, a linear law; and for a solid rod, an exponential law. The slight
deviation of the former for the hottest thermocouples is due to their
closeness to the heater, near which the horizontal components of the ve-
locity are alsoc sharply expressed (fig. IT shows the lower part of the
flow presented in fig. II%%.

In the unsteady regime, the difference consists in the fact that the
change of temperatures with time according to the exponential law, mark-
edly expressed for the solld rod, is only very approximately expressed in
the convectlive case.

A particularly sharp difference is noted at the start of the record.
Figures VI and VII show photo records taken for accelerated motion of the
photogrephic plate and show how the thermal process reaches successively
from thermocouple to thermocouple. Figure VIIT shows a photograph, which
was obbtalned by I. P. Merzlyakov on another model. The graph of figure
29 was constructed from the measurements of the initial parts of figures
IV and VIII. On the axis of the abscissas is laid off, to arbitrary
scale, the time corresponding to the first appreciable deviation of the
temperature of the given thermocouple from the temperature of the Jacket;
on the axis of ordinates, the logarithm of the mean established tempera~
ture (relative to the jacket). The points adjust well to the straight
lines. -

182%
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Formula (11.4) thus obtains a first experimental verification.

3. Unsteady Processes Described by Transverse Thermocouples

The preceding type of photographic records describe the course of
the mean temperature at a given section of the model. This mean temper-
ature is established as a result of the heat losses transmitted by con-
vection in heating a given segment of the model, and in covering the heat
losses. Therefore, on the records the heat transfer sppears only in the
form of its result and not in itself. The intensity of the transfer may
be followed more clearly fram the observations of the transverse temper-
ature difference 9+ - 6_. :

For this purpose, & new burette model was provided as described in
the preceding paragraphs (ref. 1, ch. 9, p. 991). This model has several
transverse thermocouples, attached at distances 50 millimeters apart, and
three averaging thermocouples which were attached alternately to the first
thermocouples at a distance of 200 millimeters apart. The transverse
thermocouples were constructed in the following manner. A copper wire of
0.41-millimeter in diameter was extended along the burette generator.
Along the generators on the opposite side of the burette, eight rhombs of
copper foill of 0.10-millimeter thickness, with a side one-third the
burette diameter and an angle of 600, were attached. A constantan wire
of 0.21-millimeter diasmeter was soldered to the center of each rhomb and
encompassed the burette as a belt. The ends of this wire were soldered
to the longitudinal copper wire.

The copper wires soldered to the corners of the rhombs were connected
to the change-over switch of a galvanometer. The longitudinal copper wire
was connected directly to the galvanomenter, and served as a common lead
for all the thermocouples. '

FPor stabllizing the azimuth of the laminar convective process the
model was fixed at an angle of 45° to the vertical, without any heat in-
sulation, so that the copper wire coincided with the upper generator and
the rhambs coincided with the lower generator of the model. In this way,
the transverse thermocouples measured the transverse outer temperature
difference 65, - 6o. tTo a certain scale (i.e., the velocity of convec-

tive flow v).

By parallel tests with other models it was established that an in-
clinetion of the model up to 45° to the vertical does not strongly dis-
turb the process of convective heat transfer in its most essential
features (ch. 17).



92 NACA TM 1407

Figure IX shows a sample of a record. The temperature of the lower
averaging thermocouple is recorded above the zero line. The transverse
temperatures of the bottam (first) and top (eighth) thermocouples are .
recorded below the zero line.

Figure X shows an exsmple of a record when the velocity of motion
of the photographic plate is increased, and the center (fourth) transverse
thermocouple is connected to replace the averaglng thermocouple. The
photograph alsgso shows the successive recordinﬁ_of the lower (upper curve),
the middle and top thermocouples (lower curve), and the zero line. The
arrow at the left of the record denotes the lnstant of connection of the
heater, the arrow on the right denotes the instant of its disconnection.
Figure 30 shows the time of reaching the convective process counting from
the instent the heater is connected (abscissa), as a function of the log-
arithm of the established transverse temperature difference (ordinate).
The points lie on a straight line.

182y

In this way, formuls (11.4) obtains & second experimental
confirmation.

4. Forced Thermal Fluctuations Produced by Modulation of Heater Power

Further tests, for a 6-minute period, were conducted with the sec-
ond model described in section 3, and consisted in the perlodic change
(modulation, forced fluctuationsj of the power of the heater. Figures
XI and XII show an example of a record. The photographs show the re-
tardation of the convective waves produced by switching the added power
on and off (the instants of switching on and off are indicated by the
arrows) as they move along the model. The corresponding shifts in phase
on lag times of the convective signal may be compubted by applying the
methods of harmonic snalysis. From a plot of the coordinates of the
thermocouples and the corresponding deflections of the galvancmetexr the
coordinate of the point where the convective flow ceases may be found by
extrapolation. This point is considered to be the origin from which the
longitudinal distances z are computed. Plotting the lag time as a
function of the new cocordinates of the thermocouples on another graph,
we then obtain figure 31 (which gives the results of the evaluation of
several tests). This graph shows that the points again lie on straight
lines intersecting near the coordinates of the center of the heater snd
the thermal inertias of the heater, which retards the development of con-
vective phenomens by approximately 80 seconds, may be determined.

In this way, formuls (11.4) obtains a third experimental
verification.

Figure XIII shows an example of a record of the temperature waves
of Angstrom as applied to the convectlive transfer of heat. The inter-
pretation of this record has not as yet been clarified.
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5. Natural Thermal Damping Fluctuations in Convection
for Models of Finite Length

In tests similar to those recorded in figures XI and XII, but cor-
responding to greater heating powers, the curves took the form of damped
sinusoids (see also upper curves figs. VII(B) and VIII).

Figure 32 shows a typical curve on which the difference in tempers-
tures, by means of the middle (fourth) transverse thermocouple, is
recorded.

By tests of a preliminary character it was established that the
smaller the "period" of the corresponding fluctuations, the greater the
heating power, and the shorter the column of fluid that is in motion.

The "damping" of the fluctuations increases with decrease in the heating
power. These facts lead to the supposition that the fluctuations reflect
the existence of a circular flow of fluid in the model. A definite por-
tion of the fluid which has repeatedly received a higher temperature
passes by a given thermocouple. In time this portion mixes and exchanges
heat with the surrounding volumes of fluid, and the phenomenon decreases.
Figure VIII shows how the period of these fluctuations is lengthened as
the convective process extends to the more distant thermocouples (i.e. »
as the length of the fluid column put in convective motion increases).
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CHAPTER 12

END PHENOMENA OF THERMAL CONVECTION IN MODELS OF ROUND SECTION

T82%

(INVESTIGATED BY TEMPERATURE RECORDING METHOD)

1. General Distribution of the Temperatures.Averaged over a
Cross Section Along Entire Vertical Model

The hydrodynamic charscteristic of the end phenomens is shown in
figures II and III. From the physicomathematical investigation view-
point, the very simple phencmena near the plane top (or bottom) of a
model is of great interest.

For measuring the mean temperature over the periphery directly over -
the entire height of the fluid column (including the bottcam and top) in
which the thermal convection occurs, & special model was constructed
(sketched in fig. 33). A brass rod (2) above and cylindrical glass .
reservoir (3) with plug bottom below were attached to the arms of the
support (l). Through this bottom passes a small glass tube, closed by a
plug, in which a brass piston (4) sits freely. The high-resistance en-
ameled wire of the electric heater is wound on the tapered bottom part
of this piston. A second cylindrical glass tubew(s) with a dlameter of
about 1 centimeter is placed with slight friction over the rod (2), the
tube, and the piston (4). One layer of thin copper enameled coil is
wound about the middle of the glass tube (5), thus msking up the measur-
ing resistance thermocouple (6). The tube (5) i1s provided with a reser-
voir with running water (7; and supply funnel (8). The middle part of
the tube (5)(with coil (6)) is surrounded by cotton heat insulation not
shown on the sketch. In the reservoir (3), mercury is poured forming a
tight mercury shutoff. Distilled water partially entering the reservoir
(8) is poured above the mercury in the tube (5).
With the aid of a clock mechanism and & pile-driver arrengement,; not
shown on the sketch, the system of details 5, 6, 7, and 8 1s brought into
& very slow motion (11.8 mm/hr) in the vertical direction. The velocity
of this motion coilncides wilith the velocity of motion of the photographic
plate in the recording epparatus.  In this way the resistance thermometer .
(8) records at first the temperature of the piston (4) serving as the
warm bottom of the water column at various heights, and finally the tem-
perature of the end of the rod 2 serving as the cold top of the water -
column.
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The resistance (6) is connected to the scheme shown in figure 34
which represents a bridge, balanced for a certain mean test temperature.
The resistances of the branch (9) are chosen in a manner such that they
form simultaneously the critical resistance of the photographically re-
cording galvanometer. The cubout switch (10) shunts 1.6 percent of the
entire resistance of this branch of the bridge. Therefore, its closing
unbalances the bridge in the same way the coll temperature raises by 4° C.
The connecting in of the switch (10) is done by hand and serves to grad-
uate the photorecord. Contact (11) disconnects automatically each hour
for 10 seconds. The corresponding marks on the records serve as datum
marks; they indicate the time and origin and the zero line. The param-
eters of all systems are chosen in such a manner to assure maximum sen-
sitivity of the bridge for the minimm heating of the coil (6).

An exsmple of a record is shown In figure 35 in which the coordinate
axes are indicated, the vertical distance to full scale, and the tempera-
ture of the thermsl resistance (6), and also the place occupied by the
bottom and top of the model. In region 1 the curve corresponds to the
end of the nonsteady regime after the heater and the water cooler are
connected. Region 2 corresponds to the record of the temperature of the
bottom, region 6 to the record of the temperature of the top, end region
7 to the record of the nonsteady regime after disconnecting the heater
and the water cooler. The distance x represents the degree interval,
4° ¢, obtained by connecting the cutoff switch (10) for a short time.

Through the middle of the photograph a number of datum points pass
that indicate the zero line giving the time marks. The temperature of
the fluid column in the model, averaged over the periphery, changes
strongly near the bottom and top, regions 3 and 5, and weakly in the
center part of the model, region 4. The photorecords show indentations
which reflect a certain instability of the convective process in region 4.

Figure 35 gives an instructive plecture. It shows that with convec-
tion a small vertical temperature gradient corresponding to a lower tem-
perature in the upper part 1s actually established along the center part
of the model, and which at the bottom and top goes over into another law,
the exponential law of tempersture change.

The fact that the over-all temperature drop at the bottom in region
3 exceeds the over-all temperature drop at the top in reglon 5 is caused
by the heat losses over the length of the column. The quantity of heat
obtained from the bottom is expended not only In transferring the heat
to the top but also in the heat losses over the extent of the model.

2. Variable~Length-Column

For the purpose of further study of the end phenomens, a second model
was constructed and investigated and is presented in section in figure 36.
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In the lower end of a glass tube (l), of diameter of about 1 centimeter,
there is almost tightly inserted a copper plug (2), the clearance being
closed by a pilece of rubber tube (3). The ensmeled high-resistance wire
of the heater 4 is wound on the plug (2), so that the entire plug serves
as the hot flat bottom of the model. In the model there is inserted with
slight friction a massive copper piston (5) with the piston rod ending in
the lug (6). The upper part of the model is surrounded by the cooling
reservoir (7) filled with water. The piston (5) thus forms & cold cover
of the water column (8) in which is produced the convective motion under
consideration., This column consists of distilled water poured into the
tube (1) almost to the top. Two single-layer colls of the resistance
thermometer (9) made of thin copper enameled wire connected to the two
adjoining branches of the bridgé are bound together 2 to 3 diameters
apart on the glass of the tube. The bridge is balanced when both colls
have the same temperature. In equilibrium, the switching on or off of
the switch (ll) is not accompanied by the deflections of the polnter of
the photographically recording galvanometer. The switch (lO), described
in the preceding paragraphs, is used for controlling the sensitivity.

The piston (5) is linked at the lug (6) with a pile-driver apparstus
and a time mechanism with which it can move up or down with the velocity
of the photographic plate in the recording apparatus (11.8 mm/hr).

It is assumed that the colils (9) will have a temperature almost
equal to the temperature of the bottom and top of the column (8). Thus,
for a given power input of the heating coil (4), the readings of the
galvanometer are approximately proportional to the "heat resistance” of
the column (8). Moreover, by raising the lower edge of the plston above
the upper coil of the resisbance thermometer coil, it is possible to fol-
low the temperature of the model, averaged over the periphery, below its
cold top.

The preliminary tests with this model consisted of visual hydro-
dynamic observations of the motion between the bottom (2) and the top (5)
of cork dust added to the water. The observations were made with the aid
of a binoculsr microscope through the wall of the model. These observa-
tions showed that for a given heating power input the dust remained at
rest for swall distances between the bottom and top. As this distance
- was increased the Bénard cellular motion (ref. 1) arises. The greater
the heating power, the smaller are the distances between top and bottom
at which this motion occurs, and therefore the smaller are the particles
and the more intense their motion. With further increase in distance,
this cellular motion goes over Into an antisymmetric motion, illustrated
in the photographs, figures II and III.

At the conclusion of these preliminasry hydrodynamic observations
the model was enveloped 1n a cotton heat insulation and the investigation

was continued by the temperature-recording method.

182%
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Figure 37 shows an example of the records obtained. The scalar
interval upward at the start of the record (on the left) corresponds to
the indicated number of degrees centigrade. Part 1 of the curve de~
scribes the steady thermal regime when the piston (5) lies on the bot-
tom (2). Part 2 of the curve corresponds to moderate distances of the
piston fram the bottom when convection has not yet set in. The grester "
this distance, the greater the difference of the temperatures between
the bottom and top. This difference is almost proportional to the dis-
tance. Actually the curve represents The initial part of the exponential
curve. The fluid here behaves like & solid body. The heat resistance is
proportional to the length of the model column. Part 3 of the curve cor-
responds to the convective laminax regime. Over a considerable distance,
the temperature difference is almost independent of the distance between
the bottom and top: the heat resistance of the model is almost independ-
ent of its length; it is almost entirely determined by the end regions
near the bottam and top.

Of striking sharpness are the transitions from region 1 to regiom 2,
the instant of breakswsy of the piston from the hot bottom, the transi-
tion fram region 2 to region 3, and the instant of occurrence of convec-
tive motion. Moreover, the latter transition occurs by several stages,
which evidently corresponds to the successive changes of several cellular
forms of the convective motion.

Region 3 ends when the lower face of the piston (5) passes by the
upper measuring coil of the temperature measuring resistance. Then re-
gion 4 of the curve now begins; this region corresponds to the gradual
decrease in the temperature difference between the measuring coils. This
region (4) is determined by the condition that the upward moving piston
carries away with it the adjoining region of large temperature gradients
and low temperatures.

The drop in temperature near the top in region 5 is less than the
drop at the bottom in region 2 (compare regions 5 &nd 3 in fig. 35)._ Re-
gilon 5 corresponds to the cooling regime of the model after the heater is
disconnected.

Pigure 37 gives examples of photorecords corresponding to different
heating powers indicated on each photograph. The records embrace a range
of heating powers from 0.00165 to 1 calorie per second. At the beginning
of some records the nonsteady regime, which accompanies the switching in
of the heater coll, is observed.

From a comparison of these photographs, it is seen that the greater
the heating power, the steeper and shorter the rise of the curves is in
region 2 where the fluid behaves thermally slmost like a so0lid body.
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Of special interest is the record (5) in figure 37. The regions 1,
2, and 3 are developed in it almost in the same way as in the preceding
curves. In region 3 indentations are observed which reflect the incom-
plete steady condition of the convective process for large heating powers
to which large velocities of the convective motion correspond. These in-
dentations on curve 5 are nearly four times as large as on curve 4, al-
most half as high as curve 5. This emphasizes the nonlinear charscter
of the above mentioned incomplete steady condition of the process.

Furthermore, region 4 revegls a character that was not successfully
interpreted.

The records, obtalned with the piston loweféd in the @odel, gave re-
sults agreeing entirely with those obtained in ralsing the plston and are
shown in the previous curves.

As a whole the curves shown are very instructive, but we have not
been successful in drawing any quasntitative conclusions from them.

3. Moving-Plunger Method

An interesting and simple experiment may be carried oub in the fol-
lowing manner. In the model, figure 38, & copper cylindrical plunger (1)
which enters the model with slight friction is lowered on a thin thread.
The height of the cylinder is approximately equal to its dlameter,, the
inside diameter of the model cavity. If the mean temperature over the
perimeter at any cross section of the model 2 is recorded and at the same
time the cylinder 1s slowly drawn out from the interior of the model, a
record is obtained similexr to that shown in figure XIV. This record was
produced with the ald of a temperature measuring resistance according to
the scheme of figure 34. A short copper rod (3) fitting the model with
slight friction was lowered into the model hollow before recording. Its
upper face served as the hot bottom of the water column; the middle of
the rod fitted within the heater.

As long as the cylinder lies on the bottom, & convectlve process is
developed over it and the temperature of the measuring resistance (2)
differs little from the temperature of the cold reservoir above the model.
At the instant when the cylinder (1) breaks away from the bottom (3), the
characteristic tooth appears on the curve, marked on the photograph, fig-
ure XIV, by the number 1. The number 2 denotes the instant when the upper
face of the cylinder enters the plane of the measuring coil; the number 3
shows when its lower face issues from its plane. Over the distance 1 to
2, the measuring reslstance records a gradual Increase In temperature at
the bottam of the model formed by the moving cylinder, that is, over it.
It 1s noted that the closer the warm plunger approaches the measuring
coil of the thermoresistance the more rapldly does its temperature rise.

T82¥
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On the segment 2 to 3 the plunger is situated inside the measuring coil.
Its temperature rises, however, only slightly because ¢f the finite heat
conductivity of the material of the plunger. Point 4 corresponds to the
instant of cutting off the current of the heater. Over the segment 3 %o
4, the temperature under the plunger is recorded. There is noted at
first the rapid rise of temperature connected with the removal of the
piston, then its more gradual lowering, connected with the effect of
heat, losses through the imperfect heat insulation are also noted.

Along the entire extent of the record, indentations are observed
indicating the incomplete steady condition of the convective laminar
process. o | -

4. Displacement Method

Particularly descriptive are the photorecords obtained in the ssme
manner as in figure 38, but connected with the recording of the tempera-
tures in many cross sections of the model and obtained by interchanging
the short plunger with a long rod. Essentially, this method corresponds
to the even displacement of & fluid by a solid rod (or conversely) in
the process of convection.

The following photorecords were obtained with a glass model, as in
figure 14, of diameter 10.76/12.77 millimeters on which the five lower
thermocouples were arranged at distances of 10 millimeters from each other
while the remaining ones were at distances of 30 millimeters from each
other. In taking the different photographs the upper edge of the brass
rod, moving inside the heater and forming the hot bottom of the model,
occupied several different positions relative to the thermocouples. For
exemple, on figure XV, two tests are recorded when this edge just paseed
in the center between the two lower averaging thermometers. The tests
ended in the recording of the thermal process in the model during the
motion in it of the brass rod that almost filled tightly the model cross
section. The velocity of the motion was equal to the velocity of the
photorecording (11.8 mm/hr). At one time the rod was drewn upward out
of the model and at another time it was lowered into it. The photo films
with the records obtained on them were placed together and printed on the
paper by the contact method. Both records agree sufficieptly well with
each other down to the individuasl indentations, on the curves, indicating
imcomplete stability of the laminar convection. o s

In view of the Importance of this question, such pairs of tests were
repeated with different velocities of motion of the brass fod. Figure
XVI gives exmmples of records obtained for a heating power of 0.090
calorie per second and velocity of motion of the photographic plate of
11.8 millimeters per hour. The upper record A corresponds to the same
velocity of motion of the rod as the velocity of the plate, the second
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to a velocity half as large, the third to a veloclity an eighth as large.
From a comparison of these records, it i1s seen that the dlfferences of
the "up" and "down" records are due to the time and not the coordinate .
of the rod. The slower the motion of the rod, the more accurately do the

records coincide.

In the following figures seversl phographs are given which were ob-
tained by the above method for different heating powers. The initial
part of the record represents the distribution of the temperatures along
the brasgs rod standing directly on the support inside the model. At the
instant when the rod breaks away from the support its temperature begins
to rise and the tempersture of the rod to drop. The temperature dlffer-
ence increases at first proportionslly to the thickness of the water
layer. When the thickness of the layer reaches a definite value, which
is smaller, the larger the heating power, a convective motion arises in-
creasing the heat transfer and the cooling of the support; the tempera-
ture of the support ceases to rise. As the lower face of the rod in its
rising motion passes by the level of one thermocouple after the other
and carries away with 1t the lower temperatures, the temperature of each
thermocouple rises correspondlng to the temperature of the fluid at its
level, averaged over the periphery.

T82¥

The photographs given previously show in the first place that the
characteristic law of change of the temperature, averaged over the pe- -
riphery near the bottom or top of the water column in which_the thermal
convection occurs, is the exponentiasl law. From messurements on the
photographs, this functional relation is obtained: )

zZ
6 = 65 (1 - e ER) + Az . (12.1)

where 6 = O when z = O. The nondimensiopal number s 1s approximately
equal to 1 or 2.

These photographs also show that the instability of the laminar con-
vection regime is particularly intensified for considerable power inputs
and for definite heightes of the water column, nesmely, for multiples of
about three to four times the inside model diametér (fig. XVI and XVII).

5. Conclusion .

As a whole, however, all these records were unable to give & final
quantitative picture of the end phenomena. The magnitude 6y in the
last formula is one-fourth as large as may be expected from the compari-
son of the molecular heat conductivity of water with the heating power.
In other words, the heat conductivity in the end phencmenons sppears to
be four times larger than its tabulated (molecular) velue. This impor-
tant gquestion requires further clarification.

R
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CHAPTER 13

OPTICAL METHODS OF INVESTIGATING CONVECTICN IN

MODEIS OF SPECTIAL. FORM

l. Introductory Remarks

The distinctive feature of convective phenocmense is that the veloc-
ities and temperstures change very remarksbly within the fluid. These
changes cannot be studied by observing the velocities and temperatures
only at the boundaries of the apparatus in which the convection takes
place. The investigation of the deep internal layers requires the appli-
cation of some sounding device that penetrates into the body of the
fluid.

The construction of even the most intricate thermometers that can
be introduced into the gtream of the convective flow complicates the
problem because the convective flow, on encountering even the thimnest
filament, becomes distorted relative to its initial direction and ex-
changes heat with the fillament. For this reason those methods which
permit a deep sounding of the convective phencmena, and at the same time
are as far as possible without effect on the development and course of
the process, are of great value.

The optical methods are methods of this type. A light ray in a
transparent fluid exerts a negligible action on the fluid and at the
same time maey undergo changes in the £luid which permit studying the
causes that produce them. The method of adding light-scattering psr-
ticles to the fluid has long been employed In hydrodynamics. This meth-
od was used in preparing the photographs of figures IT and IIT.

Thie chapter describes a group of methods that make use of the de-
pendence of the index of refraction (the velocity of propagation of
light) on the temperature. These methods are based on the fact, which
is described with great asccuracy by the known formula of Lorenz-Lorentz,
and which may be formulated as follows: The changes in the index of re-
fraction are almost exactly proportional to the changes in density of
the given substance (depending in particular on the temperature). The
experimental predesessors of these methods are the variants of the
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penumbra (schlieren) method. One of these methods 1s coarse (secs. 2
and 3), being suitable only for demonstration purposes. Another, which
is a development of the former; possesses great promise as a quantitative
method (secs. 4 and 5).

2. Prismatic-Vessel Method

The convective phenomenon is produced in a vessel of special form -
a high prism of triangular or trapezoidal cross section (A), presented
in plane on figure 39. The vessel is filled with the fluid to be inves-
tigated and is placed directly in fromt of a large objective lens (C).
A point source of light (8) is set up at twice the focal distance behind
the objective. At twice the focal distance in front of the objective, a
real image of this source is Obtained, which is deflected toward the ves-
sel as a prism with vertical refracting edge and expanded by it into a
spectrum. A Qiaphragm (B) with small opening (a) is placed at this posi-
tion. The light passing through the opening of the diaphragm falls on
the objective of the camera. This objective may have a very small lumi-
nous power but must be achromatic to the light rays acting on the photo-
graphic plete. On the ground glass of the camera, a sharp image of the
part of the prism A which is illuminated from behind through the large
objective C is obtained.

This apparatus recalls the schlieren apparatus often gpplicable for
the qualitative observation of convectiye-heat Interchanges. The appar-
atus described differs in that the investigated object 1s given the form
of a prism. This improvement gives a number of advantages (ref. 1).

If the vessel is filled with a homogeneous fluid, the-deflection of
the same color rays is the same in 8ll parts of the prism. The diaphragm
cuts out a definite reglon from the spectrum (e.g., the green region),
and a green image is obtained on the ground glass. If, however, in the
path of the light rays some place on the prism has a higher mean temper-
ature (i.e., a smaller density), the mean index of refraction of this
place will be less and the light will be slightly deflected. Only the
more refracted blue rays may pass through the opeming of the diaphragm.
The heated part of the prism is imaged on the ground glass &s a blue
spot. The more strongly the mean temperature differs in two parts of
the prism, the more strongly does the color of the images formed om the
ground glasss differ. The mean temperature may have such large changes
that the corresponding spots will appear black; they will be formed by
infrared or ultraviolet rays. In order that these parts may be seen,
the diaphragm and its opening must be moved horizontally.

If several layers of fluid of different indices of refraction are
arranged along the height of the prism, they will form bands of different
colors on the ground glass. But, if along the height of the prism a
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continuous change, characterized by the constant gredient of the index
of refraction, 1s produced, the fluid in the prism will act as an auxil-
lary prism with horizontal refracting edge. For exemple, if it is warmer
below than gbove, the prism deflects the rays not only toward the side
but also upward. The rays of different color form a somewhat deflected
and slightly diffused spectral band. . ——

The plane of the dlaphragm B is schematically presented in the upper
left part of figure 39. The point O denctes the place where s white im-
age of the light source would be obtained if the index of refraction of
the fluid were equal to unity (the trace of the principal optical axis of
the large objective C). The letters Kp on the same level with the point
0 mark the spectrum formed by the warm part of the prism, end the letters
chpl mark the spectrum formed by the cool part. The line E represents
the somewhat diffuse spectrum obtained when a moderate vertical gradient
of the Index of refraction is present in the prism. The line FB corres-
ponds to a large vertical gradient.

If the opening of the diaphragm is placed gt the point a, then the
warn part of the prism of a blue color, and the cool pert of a red coloxr
may be seen through it. But no rays pass through it from that part of
the prism where a vertical gradient of the index of refraction has been
established. This part will appear as black on the ground glass. Im
order to obtain an image of this part, the opening must be raised to
point b or 4. Through thls opening the entire prism, except the part
with the given vertical gradient, will sppeaxr as black.

Places with a horizontal gradient of the index of refraction will
either strengthen or weaken the action of the prism A. BSuch places must
not be confused with the heated or cooled psrts, as is seen from the
following considerations.

Figure 40 shows schematlically the path of the rays in a prisﬁ; sit-
usted in a vacuum, in which there is a horizontal gradient of the index
of refraction

n = n(x) (13.1)
We put AE = BF = dx. In order that rays passing with minimm deflection
(ineide the prism perpendicular to the x-axis) be deflected in the direc-

tion BC, it is necessary that the optical length of the path ABC be equa.l
to the optica.l length of the path EFG:

nAB+BC=(n+%d_x) e) (13.2)
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where ~N

(13.3)

TRAY

EG = {x + dx)tgg
7.
Substituting equation {(13.3) into equation (13.2) gives

n

€ 2 ax
cosw

mctg £ + 2 xSmM=(n+d_nax)<x+ax)tgs
a

~ nxtg £ + (n + x %)tg £ ax (13.4) -

whence
D €

R+ X = ax = —— (15.5)

We set

Dg + € - > (13.8)

€ ; § << DO
gin - . J

The length 81 (7 is equal to the distance of the prism A from the open-
ing a) denotes the horizontal displacement of the opening in the diaphragm .
B. This displacement is required in order to see the prism in light rays
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for which the index of refraction is not equal to ng but is equal to
n=ng+y. Since, owing to the relations (13.5),

Do + € Do + €

. (3]
gin ——— + c0o8 —5— X 3
ng + ¥ + X %-’ 2 = 2 2 (13.7)
sin <
2
we obtain
DO + €
cog —————
Y+x%%= dc%‘fl = 36 X 8 =K X(81) (13.8)
: Zsin—z- '

Prom the preceding formula the following conclusions can be drawn:

(1) In all cases where the gradients of the index of refraction
dy/dx are kmown to be small, the color for a white source or the dis-
placements &1 <for a monachromatie light source to a certain scale di-
rectly determine the index of refraction

¥y = K(51) (13.9)

The isolines of the same color {(displacements) correspond to the topo-
graphic horizontal contour lines of the index of refraction (temperature).

(2) In those cases where the gradients are known to be large and
occupy narrow parts of the prism so that the over-all changes of the in-
dex of refraction sre not large, the color (or displacements) determines
these gradients:

% - KX}ESZ) (13.10)

In the latter case it is convenient to represent the image of the prism
as a "relief map" of the index of refraction (temperature) with a mirror
surface illuminated under different sngles. The bright lines on this
relief mep determine those pleces where its steepness corrxesponds to a
given position of the light source (displecement).

Thus, in the image of the prism, the isolines of the same color
represent either lines of equal temperature or lines of equal horizontal
gradient. .

For the photographic recording of the cbserved comvective phenomena
it is necessary somehow to distinguish the actinic colors of the spectrum
from each other. In particular, this may be done by the following
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method. A light source that would give a large number of lines (iron
arc) must be chosen. From a preliminary spectrograph, a detailed deter-
mination is made on the given photogrephic plate of the relative inten-
sity of all the successive spectral lines. If the process of heat con-
vection In vessel A is photographed on the same materisl, isolines of the
same color (i.e., of the same spectral line) will sppear. . By establish-
ing the order and relative intensity of these spectral lines, conclusions
ag to the temperature distribution in the model may be drawn.

For purposes of rougher computations, & simplified device may be
applied. A light source having & small number of bright lines (mercury
arc) is used. One actinic line is chosen, and the model is photographed
in the light of this line for several positions of the opening a of the
disphragm. Each photograph gives its isoline of the same color. The
narrowness, sharpness, and the required length of exposure. of this isoline
are determined by the dimensions of the point source and the opening in
the disphragm (or their corresponding slits). It is useful to note that
the obJjective C should be of a large luminous power, but its chromatic
character is not important.

This method permits a demonstrational varisnt. For the light source
8, according to figure 39, the crater of a Petrov electric arc is em-
ployed directly, and the camera 1s replaced by the arrangement shown in
figure 41. The adjustment is begun by placing in the path of the rays
deflected by the prism A a typilcal projection objective @ in such a man-
ner that it will give a sharp imsge of the prism A on the screen z. A
diaphragm D ig then placed with its opening in the plane in which the
image of the arc, expanded into a spectrum, is received. The opening in
this diaphragm is placed in the green part of the spectrum so that the
image of the prism is colored with an easily wvisible green color.

The difficulties of the further adjustment reflect the contradictory
requirements of sufficiently illuminating the screen while mainteining
the sensitivity. This adjustment reduces to the choice of the distances
between the crater of the arc and the large objective C (the choice is
accompanied by the shifting of the diaphragm D) and the cholce of the
diameter of the opening in disphragm D. The adjustment must be coordi-
nated with the optilcal arrangement employed. At the end of the adjust-
ment of the apparatus and its besting it is recommended that a reversing
prism P be placed immedlately behind the disphragm D so ‘chat the image
on the screen will be upright.

The thermal convective phencmena gre produced in the prismatic ves-
sel A by spirals, balls; or lattices of high-resistance wire in which an
electric current is allowed to flow. The prism A should be filled with
nonvolatile heavy fluids that do not disturb the material of the vessel
(in particular, the glue or paste that seals the prism. edges). The most
suitable flulds appear to be mixtures:of glycerine snd water.

T82%
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In solving uncomplicated problems, the vessel filled with fluid
may be in the form of a rectanguler parallelepiped, with a glass prism
placed before it. This arrangement is shown in figure 41 (A, the glass
prism; B, the vessel with fluid).

The results of working with this optical method and checking by
tests with light-scattering particles are as follows: T

(1) In the ebsence of thermal phenomens in the mixtures of water and
glycerine all the assumptions of the theory presented previously (includ.—
ing those of the stratified arrangements of solutions of different con-
centration) may be fully confirmed.

(2) It is poesible to investigate the temperature distribution for
the heating of a homogeneous fluid. For small heating powers, the tem-
perature distribution differs in stability. On top of the heater a sta-
tionary column of rising warm fluid is observed pressing in its flow
against the nearest wall. This distribution of the temperature gradients
indicates the leminar fluid flow. In the center part of the model there
is only the vertical component of the velocity; the phenamenon differs in
the presence of considerable horizontal and in the absence of apprecisble
vertical temperature gradients. Near the hester and near the surface of
the fluid vertical tempersture gradients, together with horizontal veloc-
ity components of the fluid particles, are revealed.

The steady regimes, on connecting in the heater, proceed in the fol-
lowing menner. An instant after the heaster is connected a cap of warm
fluid is formed over it. This fluid rises quickly, leaving a track be-
hind it; thus, it resembles s mushrocm. On reaching the surface of the
fluld, the cap wanders off to the side or breaks up and graduslly van-
ishes. When the heater is disconnected, the observed phenomenon grad-
ually fades, and in a few seconds the picture vanishes without a trace;
the temperatures have balanced out.

For considerable heating power inputs the rising column of warm
fluid does not remsin stationary. Branches separate from the column &hd
the phenomenon assumes a "ringlet™ form (ref. 2, p. 75). The stronger
the heating, the more violent is the motion observed in the fluid.

Along with considerable horizontal gradients, considersble vertical tem-

perature gradients occur at scme places.

(3) It is possible to investigate convective phencmens when the mod-
el is divided into two segments by a thin metallic partition like a sec-
ond bottaom. The fluid of the lower segment 1s warmed by the heater and
heats the partitiom, while the latter heats the fluid of the upper seg-
ment. Under these conditions, wide convective flows with small hori-.
zontal temperasture gradients were cbeserved in the upper segment. Near
the partition considerable vertical temperature gradients were cbserved.
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(4) When the lower balf of the model was initially filled with a
fluid of raised density (raised concentration of the glycerine in the
water or lowered tempersture) and a fluid of lower density (lowered con-
centration or raised tempersture) was carefully poured on the upper half
of the model, it was found that even a slight jump of density also blocks
the convective flow like & solid interposed bottom (see ref. 2, p. 76,
fig. 28, p. 83, and fig. 32). Near the boundary of the division consid-
erable vertlcal temperature gradients are cbserved. A density Jump is
accompanied by a temperature Jump. ;

As a whole, the image seen on the projection screen pIESents a fas-
cinating picturesque spectacle.

3. Vertical-Deflection Method

For studying the phenomena of convective heat transfei;at abové-
critical power inputs in round tubes, a special model suitable for ob-
serving large vertical temperature gradients is employed.

The model (fig. 42) comsists of a vertical burette A with the enam-
eled high-resistance wire of the heater B wound directly on the glass of
the lower part. The center of the burette is surrounded by a prismatic
vessel D in the form of a rectangular perallelepiped, with a cork bottam
and two lateral glass walls. Placed on the upper part of the burette is
e funnel E, serving as the cold reservoir. The burette, funnel, and
prismatic vessel are filled with water. At times it is useful to place
ice in the funnel.

The middle part of the model is set in front of a large objective C
of a schlieren spparatus with horizontal knife edges F and G. These
edges are adjusted in such menner that, in the sbsence of a thermal phe-
nomenon, only the luminous divisions of the burette are clearly visible
on the ground glass of the cameras againgt the black background. When
vertical temperature gredients arise (warmer below), the corresponding
part of the buretie acts as a2 prism, deflecting the rays upward. These
the ground glass k of the camera, ‘where a luminous image of this part
of the burette 1is formed.

The tests show that, for small heating powers, no optically appre-
cisble vertical temperature gradients arise. For heating powers larger
than the critical, the entire fluid in the burette spontaneously breaks
up along the vertical into a number of segments separsted from each other
by considerable temperature jumps. The boundaries of the segments shift
spontaneocusly in a disorderly faeshion. The most typical form of this
displacement is in en advancing displacement. Along with it a second
typical interchanging form is also often encountered: The luminous

82%
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boundary dividing two segments bends, stretches out, assumes the form of

an integral sign, and breaks in half, each part very precipitately unit-

ing with the opposite faces of the interchanging segments. These defor-

mations of the parts of a large gradient reveal a "waltzing" interchange

fluid motion of the two neighboring segments. The axis of this motlon -
is some diameter of the tube. ’

These tests show that the lerge gradients obtalned at sbove-critical
hegting powers are nonuniformly distributed over the height of the tube.
They are concentrated principally at the boundaries of definite regilons;
namely, the segment boundaries. Within the 1limits of each region an In-
tensive laminar motion and heat transfer undoubtedly occur. In addition,
however, a waltzing motion simultanecusly intermingling the contents of
two neighboring regions sometimes srises. In this way, when the heating
powver is Increassed, two processes occur together. TFirst, the mean gra-
dients increase; and secondly the frequency of the interchanging motion
(and with it the heat transfer) increases. This is the explanation of
the above-criticael section on figure 25. Thils explanation conteins an
essential statistical element associated with the previously mentioned
disorder of the phenomena.

4. TLattice Method

In sn experimental verification of the laws of hest propagation (and
also of diffusion processes), it is, in the final analysis, usually nec-
essary to check the correctness of the fundamental equation of heat con-
duction or the equation of diffusion that formally agrees with it. The
essential term in these equations is the Laplacian of the temperatures
or the concentrations. The direct computation of the Laplacisn (i.e. ,
the sum of the second derivatives with respect to the coordinates of the
observed magnitudes of the temperastures or concentrations) by the method
of finite differences is associated with lerge errors, since it is re-
quired to compute small differences of large magnitudes measured only
approximastely. Investigators must therefore have recourse to various
indirect devices, for example, to approximate first the observed magni-
tudes by some conveniently chosen analytical functions of the coordinates,
and then to compute the value of the Laplace o;pera.tor of these func‘t.ions
by an analytical method.

Thus the direct experimental determination of the magnitude of the
Laplecisn, even for the conditions of the two-dimensional problem, is
very desirable. An optical arrangement that permits solving this prob-
lem is described in the following paragraphs (fig. 43; see ref. 3).

The investigated model A, provided. with positive lensesg, is d.esigded
in such manner that it serves as the subject of the investigabtion and as
the objective in the schlieren arrangement. The focal distance of this
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objective should be large compared with the dimensions of the model (small
luminous power of the model-objective). The model is illuminated by a
point socurce of light 8. In the absence of any thermal or diffusion pro-
cess, the image of the light source is focused by the model-objective on
lattice B representing a system of equidistent vertical spd horizontal
rods, at the Intersections of these rods. Through the good objective @,
placed directly behind the lattice, the model-objective is focused on the
ground glass D, on the photograsphic plate of the usual camers, or on the
film of & moving-picture apparatus. This image will be dark, since it

is cbtained only from the rays scattered by the model, because the direct
rays of the source are kept back by the intersections of the rods of the
lattice B.

If a thermsl or diffusion phenomenon now arises in the model, then
at some regions a density gradlent occurs and with it a gradient of the
index of refraction. Such regions will act like prisms, deflecting the
rays toward the grester densities. The light passing through these re-
gions of the model does not fall at the intersectlon of the lattice but
on a new part of the lattice, either on its rod or in the spaces between
the rods. In the first case s dark image is obtained on the positive
of the photograph, in the second case a luminous imsge is obtained. Thus,
dark stripes that break up into two families appear on the photograph of
the model. Esach dark stripe corresponds to one rod of the lattice sepa-
rated from the point of initial focusing by & definite digtance. ZHence,
one family, corresponding to the horizontal rods of the lattice, forms
on the photograph of the model isolines of equal vertical gradient of the
index of refraction, and the second family forms isoclines of egual hori-
zontel gradient (equal density, temperature, and concentration). For the
computation of the sensitivity see the following paragraphs.

The arrangement of the isolines permits the following interpretation.
The number of isclines of equsl vertical gradient corresponding to unit
length of any vertical segment within the limits of the image of the
model represents, to a known scale, the space rate of change of the ver-
tical density gredient at this region of the model (i.e., the second deri-
vetive of the gradient with respect to the vertlcal coordinate). In the
same way, the number of isolines of equal horizontal gradient correspond-
ing to the horizcntel unit of length represents the second derivative with
respect to the horizontal coordinate. The sum of the two numbers (with
account taken of their signs) will give the magnitude of the Laplacian
of the dengity to the same scale. (index of refraction, temperature, and

concentration).

Therefore, the problem formulated is directly solved with a large
degree of accuracy. In comparison with the method of section 2 (fig.
39) this method presents the following features:

(1) The most essential difference is that the diaphragm is replaced
by a lattice.

TR?%
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(2) Such a narrow range of light waves is used (for photographing)
that the incomplete achromatism of the model-objective does not consti-
tute an obstacle.

(3) The large objective C is combined with the model A, which is the
least important difference.

In the following photographs exsmples of the a.pplica.tion of this

method are given. 10 A cylindrical cavity in a surrounding metal mass
with horizcntal axis and of a diameter and length equal to 35 millimeters
(see fig. 54) was used for the model. The cavity was bounded on both’
sides by spectacle glass and was filled with glycerine. The vertical
distance is marked on the photographs by a straight plumb line.

Pigure 44 corresponds to the case where a vertical tempersture gra-
dient (warmer below) is produced in the surrounding mess. As a result,
a convective motion arose in the cavity; the warm liguid rises along the
vertical dismeter and drops along the sides. At those regions of the
model where the £luid intensively warms or cools, at the bottom and top,
the Laplacian has a large positive or negative value, the isolines of
equal gradients then lying close together. This is particularly marked
in reletion to the vertical gradients. At the center part of the model,
the heated fluid, on rising, carries away large emounts of hesat, main-
taining an almost unchanged temperature. In this part there are practi-
cally no isolines. More accurately, one isoline rolled into a fantastic
ball is observed here. It can be deciphered by increasing the focal dis-
tance or by using a small meshed lattice. e

Figure 45A corresponds to the case where a horizontal tempersasture
gradient is produced in the surrounding mass. As & resullt, a convective
motion is produced in the cavity; along the werm wall the fluid rises
and slong the cold wall the fluid descends. A considerable density of
the isolines of both families is observed in those places of the model
where the tempersture of the fluid undergoes a large change. In the
center of the model there are indications of only a feeble thermal pro-
cess. The isoline forming a closed curve in the center of the photo-
graph corresponds to an almost zero horizontal gradient. The isolines
obliquely forming two pairs of mutuslly enbracing flgu;res belong to the
family of equal vertical gradients. e

It is useful to emphasize that in the phenomena of diffraction lim-
it, the sensitivity of the described method is in the downward and not
in the upward direction. The reason for this difference is that the lab-
tice standing in front of the objective of large luminous power bresks

it up into e multiplicity of objectives of small luminocus power, and the

10¢ . N. Guk participated in the ﬁrepération of these photographs.
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forming of the imeges of the stripes near cne shother is equivalent to

the photographing of a small-meshed object. The image is produced by

narrow pencils of light rays coming from the parts of the model that lie x
close together. In figure 46, P denotes the plane of the lattice, ¢ the

plane of the photographic plate, 4 the distance between the neighboring

rods of the lattice, and x +the distance between the corresponding

stripes on the photograph. For sgimplicity, we assume that we are dealing

with the nearest neighborhoods of the principal optical axls 00 of the

camera. From the rectangular trilangles, we obtain, in an elementary

mannexr S
"]
2 =
12 + (24 &y - r2 = 12 +-EE + xd + QE
2 2 1 4 2 4 (
13.11)
2 2 2
a2 x 4y _ .2 _,2 X xd 4~
t +(E'z) =T =l T -F
whence, after subtracting,
(rl - rZ)(rl + ry) = xd (13.12)

In correspondence with the results of the diffraction théor& of optical
ingbtruments, the stripes obtained on the photograph are sharp if the 4if- :
ference 1rq - Ty is not greater than the half wavelength of the light

M2. Setting aspproximately ry + ry = 21, we obtain the following condi-
tion of the sharpness of the stripe: S —

xd 2 1A (13.13)

From this it is seen that for rough processes, when the gradient varies
considerably even over small distances (x is small), the lattice should
be coarse (d should be large). Conversely, for delicate thermal pro-
cesses when & hardly sppreciable thermal phenomenon gives wide stripes
on the photographs (x is large), it is necessary and possible to use a
small meshed lattice (4 may be small).

The preceding method mey be applied for quantitative measurements
in all those cases where the qualitative schlieren method msy be useful.
The following paragrephs give some of the varilants for this method.

(a) For increaging the luminous power and reducing the exposure time,
in particular for moving pictures of steady processes, the point source
of light may be replaced by a plane source. In this case it should rep-
resent a negative reproduction of the lattice (transparent vertical and
horizontal convenient openings in a nontransparent layer) to a scale which
sssures & derk image in the absence of the phenomenon under Investigation.
However, it is necessary for the cbservable dimensions of the source to
be small if they are observed from the model center ("small luminous

power").
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(b) The objective of the camera may be replaced by & concave mirror,
on which the lattice is drawn. This veriant considerably reduces the
over-gll dimensions of the apparabtus.

(c) The objective of the model may also be replaced by & concave
mirror. A light ray must then pass through the model twice, a circum-
stance which doubles the sensitivity of the method. This variant again
considersbly reduces the over-all dimensions of the apparatus.

For subjective observations the method further permits the following
modification. The light source is replaced by an illuminated ground or
mlilky surface on which a multicolored network of lines is drawn. The
camers is replaced by an observer who views the model through a small
opening, which is put in the place of the lattice. By cbserving from
the color of the line its direction (vertical or horizontal) and its num~
ber (e.g., distinguishing the zero and fifth lines by special colors),
we are rapidly eble to gain an idea as to the character of the dbserved
process from the configuration of the visible color pattern.

5. Application of Lattice Method to Experimental

Investigation of Laminar Convection in Cavity of Convenient Sha.pell

As an exemple of the preliminary applicetion of the lattice method,
the investigation of the concrete problem mentioned in the heading of the
section is described in the following paragraphs. A suitsble cavity of
38 by 6 millimeters is bored in the center of a babbitt parallelepiped,
shown in figure 47. The cavity is stopped with two spectacle glasses of
1.5 diopters each, ard is filled with distilled water. For filling the
cavity, a through chanmnel of 3 millimeters is used. The volume of the
cavity was 1/70 as large as that of the surrounding mass. It may thus
be assumed that the conditions in the model are approximately the same
as those of a slit in an infinitely large mass.

On both sides of the cavity parallel to its length through chanmels
are bored, three on one side for inserting porcelsin tubes with Nichrome
heater inside, and two on the other side provided with connecting pieces
for the supply of cold water. The model is pressed in a Textolite ring
and is able, on the horizontal parallel rods of an optical bench, to
assume any angle to the vertical. T

The source of light is an opening of 0.2-millimeter diameter in
the shade of a lamp. In these tests the vertical component of the tem-
perature gredient was very small and was not of interest in this stage

u‘]‘.‘he present section was composed from deta obtained by G. N. Guk.
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of the investigetions. For this reason, all the photographs were pre-

pared with the lattice consisting of only the vertical rods. These rods

of 1.3-millimeter diameter were arranged with a distance of 3 millimeters -
between their axes. The photo objective of 45-millimeter dlameter, with

a focal distance of 210 millimeters, was placed with the lattice about

560 millimeters from the middle plane of the model. The focal distance

of the model filled with water was 480 millimeters. :

Under these conditions the computation of the sensitivity may be
made on the bagis of the following considerations. Filgure 48 sghows two
parallel rays traversing in the geometric paths, in the interior of the
mcdel. The distance between the rays is dy. The optical, length of the
rath of one ray, passing through the fluid in a region with temperature
@ is sen, where n 1is the index of refraction of the fluid. The opti-

jrctad

cal length of the neighboring ray is s(n +-%§ de), gince it passes in-

side the fluild having & different temperature. Thus, the two rays pro-
duce the optical difference of path of s %g d6 over the distance s.
Hence, the wave front, and with it the light rays, is deflected by the
dn 4o
small angle s 36 55'

cell of the lattice, then (see fig. 46)

If this deflection of the rays corresponds to one

dn 468 _ x
s 35 X Frriiais (13.14)
whence
de X :
= - . 13.15
v & ( )
de

For water at 20° C, dn/d@ constitutes epproximately gx10~5 degrees'l.
Hence, for these dimensions of the model, we obtain

x = 0.3 cmn
1 = 56 cm
(13.16)
8 =4 cnm
%g = 15 deg/cm

The deflections (at a temperature above 4° C) are directed toward the
cold regions of the model. On raising the temperature the magnitude
dn/de increases; hence, d9/dy, corresponding to cme cell of the lattice,
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decreases, so that the same absolute temperature gradients are now ex-
pressed by a higher number of the rod of the lattice. Hence, the stripes
on the photographs that correspond to the warmer regions of the model lie
closer together than in the antisymmetric cold regions.

The duration of the steady thermal regimes for this model was gbout
2 hours.

As illustrations, & number of photographs thet were obtained with
this model are here reproduced (magnified twice), figure XVIII, A, B, C,
D, E, and F. On these photographs it is possible to follow the changes
of the thermal picture for vertical slikts at different heating powers.
The center of each photograph shows the black image of the plumb line.

In order that this line may always be seen, the apparatus was so adjusted
that the image was bright in the sbsence of the thermsl process: the
bundle of rays does not fall on the rod but on the center of the cell of
the lattice. As the heating power is increased the number of stripes in-
creases, their form remaining almost unchanged. The S-shaped curvabure
of the central luminous stripe may be observed on all photographs. The
stripe shows that the region of zero horizontal temperature gradient
occupies the entire length of the central part of the model and is turned
up toward the warm wall of the model and down toward the cold wall. This
circumstance suggests that the vertical tempersture difference in sbsolute
value is close, if not equal, to the horizontal temperature difference.
Because the vertical heating was not specially arranged, this dlfference
hag the natural sign of being warmer upward.

Figures XIXA and B show photographs obtained with an inclined slit.
Figure XX shows photographs obtained with a horizontal slit. h
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CHAPTER 14

CONCLUDING SUMMARY OF EXPERIMENTAT. INVESTIGATIONS
OF LINEAR AND QUASI-LINEAR CASES

As may be seen from the material presented in chapbters 9 to 13, the
theory described at the beginning of the book is essentially valid for
lamipnar fluid motion.

1. The numerical value of the magnitudes entering the theoretical
formula (5.15) is satisfactorily confirmed in experiments on models of
different dismeter and on models made of different masterials (ch. 10,
sec. 2).

2. The convection parameter is actually constant along the model
height in those cases where convection takes place (table VIII). In the
computations it is necessary to comsider the tremd of the stendard con-
vection curve (ch. 8, sec. 3).

3. The laminar motion in a closed model actually consists in the fact
that the section of the model spontaneously divides into two parts: in
one part the warm fluid rises upward, eand in the other part the cold fluid
descends downward (fig. III).

4. In leminar motion one side is actuslly warmer than the other (ch.
10, secs. 4 and 5).

5. Diametral antisymmetry, corresponding to the smallest root of the
characteristic equation (5.15), ig actually observed above the heater even
with annular heating (fig. II).

6. In the center part of a vertical model the velocities of the lam-
inar flow are, &t least essentially, vertical and are accompanied by
characteristic small vertical and considerable horizontal temperature
gradients (ch. 13, sec. 2). '

7. The conditions at the ends of the model do not play a deciding
role in the steady regime except for the still doubtful case of short
columns of liquid (ch. 12, sec. 5).

1929
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8. Near the plane boundaries of the model (warm bottom and cold top)
the exponentiel law of the temperature averaged over the perimeter is
approximstely observed (formula (12.1)).

9. The unsteady phencmena of convection differ in striking features
(ch. 11).

10. The laminar and above-critical convection regimes are separated
from each other by a sharp critical point (ch. 10, sec. 1, fig. 25).

11. The above-critical regime is characterized by an gspproximste
constancy of the provisional Nusselt number the value of which shows that
in the above-critical regime, the thermal behavior of the model is equiv-
alent to a solid body with a heat conductivity probably a thousand times
es large as the molecular heat conductivity of the fluid (ch. 10, sec. 3).
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CHAPTER 15

CASES REQUIRING SOLUTION OF NONLINEAR EQUATIOES
OF GRAVITATIONAL CONVECTION

l. Practical Significance of Nonlinear Cases ;hd

Restriction of Scope of Problem

Chapter 5 shows that the adalytical treatment in known functions is
possible only for linear differential equations that describe only a
specialized case; namely, the strict collinearity of the velocity vector
of the flow, the tube axis, and the acceleration vector of the gravity,
along with constant temperature gradient slong the model. “Chapter 11
shows that, as & result of the heat losses over the model, this require-
ment is not strictly observed even in a model of special construction.

In nature and in industrial practice this requirement is stlll less
strictly meintained even in more or less similar cases, for the followilng

reasons:

(1) The noncylindricel shape of the ducts (the ducts and tubes are
of varigble cross section)

(2) The nonuniformity of the wall thickness or the coefficlent of
heat conductivity along the duct _

(3) The unexplained presence of heat sources or sinks that produce
additional temperature gradients

(4) The parametric nonlinearity of the process, the role of which
is particularly marked in ducts of small dimensions (pores)

(5) The end phenomena and the phenomensa near the principal heat
sources and sinks

(6) The nonverticsl position of the channel axis.

82%
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In every practical case some of these causes are very important,
while in other cases they are decisive.

At the same time, however, the solution of a system of nonlinear
partial differential equations does not lend itself to the application
of the known functions introduced in practice and studied in connection
with the solution of linear equations. Therefore, the mathematical
methods may be of assistance in studying the processes of convection
only in the form of certain complicated and laborious computatlonal pro-~
cedures (method of successive approximations).

The sgbsence of any generalized mathematical guiding principle in
regard to the theoretical cases of most interest makes it necessary to
give considerable attention to the cases that will acquire the greatest
practical significance in the future. 1In our present discussion, only
the preliminary theoretical results are given for the following three
investigations: +the vertical circuler tube with heat losses, the horl-
zontal circular tube, and the spherical cavity.

2. Observations on Generasl Method of
Solution of Nonlinear Equations

No method of solving nonlinear differential equations in closed
form is known. Considerable study has been made of functions that rep-
resent solutions of linear differential equations. These functions,
only with rare exceptions, satisfy simple nonlinear differential equa- -
tions. For example, the solution of an ordinary differentisl equation
of the first order leads directly to series difficult to compute if this
equation is nonlinear.

Therefore, the solution of the partial differential equations of
gravitational convection, which are nonlineer and of high order, cannot
be a simple problem. Other more or less investigated solutions of non-
linear equations may here serve as an analogy; for example, those which
have important application to radio technology due to the brilliant work
of the school of Soviet academicians L. I. Mandelshtam and N. D.
Papaleksi. The different variants of the method of successive approxi—
mation have proven fruitful.

The essence of the method, as applied to the problems of gravita-
tionel convection, consists in the following three operations: i

(1) The system of differential equations (2.1), (2.2), and (2.4),
by elimination of &ll unknowns except one, reduces to a single differ-
entiel equation of & raised order. An example of this operation is the
transition from two harmonic equations of the second order to one bi-
harmonic equation of the fourth order (ch. 3, sec. 3).
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(2) By adapting to the special features of the case_under consider-
ation, special dependences of the required function on all the arguments
except one are given for the indispenssble condition of the separation
of variaebles. In this way, we;pass from the more general case of a
partial differential equation to the narrowed case of an ordinery dif-
ferentiel equation (in total derivatives). An example of this aperation
is the typical case of the introduction of an exponential funection of
time (ch. 6, sec. 3, eq. (6.11)). 1In eliminating the unknown dependence
on the space coordinates by this method, use of the property of space

symmetry is suggested.

(3) The ordinary nonlinear differential equation is Solved by the
method of successive approximations.

The essence of the method of successive approximatioms lies in first
introducing or seekling, on the basis of physical considerations special-
ized for the case under consideratlon, & certain parameter. that quantita-
tively characterizes the "measure of nonlinearity." The required function
is then broken up into a sum of new functions of which each differs from
the preceding by a multiplying factor; namely, the previouBly mentlioned
parameter of nonlineasrity. Finally, the equation is expanded in powers
of this parsmeter. Since this constant parameter is not Zero, the entire
equation can be satisfied only if the coefficients of the different
powers of the parameter (the required functions of the remaining single
argument) are zero. The single equation is thus converted into a system
of simultaneous equations. Each of the equations is obtained as linear
with respect to the successlve required component entering the unknown
function, but nonhomogeneous, containing on the right side! the required
couponents of the function and their derivatives in nonlinear combina-
tions. In turn, the solution of these equations permits adding to the
previously found solution a new accuracy-improvmng term - the successive

approximation. -

In this successive computation, a very lerge significance is pos-
sessed by the "zeroth" approximation, which starts the process of suc-
cessive approximations and plsays the decisive role. In choosing a new
function as the zeroth approximation, we can deséribe qualitatively new
processes (secs. 4 and 5). The linearized case (ch. 3) plays the role
of the "fundaemental" initisl orientation for the Investigation of certain
special variants of these qualitatively different processes.

The order of the three operations previously mentioned may be chosen
differently, depending on the speclal circumstances of each individual
case, from considerations of facilitating the technique of the laboriocus
computations. One of the operations may even be c¢arried out only par-
tially, then the second operation may be carried out, and finally the
first operation may be completed (sec. 5). However, in vwhatever form the
parts of these three operations are carried out in any computational
procedure, in principle they represent only a single device.

T92%
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In regard to the physical meaning of these operations, the second
and third operation represent certain physical sssumptions in mathemat-
ical form. In the choice of these assumptions a considerable part is
played by the practical requirements, and by the possibllity of realizing
& physically verifisble experiment.

In this connection it should be emphasized that the "fundamental®
equations discussed in chapter 3 do not represent the original general
equations of gravitational convection, in which the nonlinear terms have
been mechanically deleted. The nonlinear physical character of the equa-
tions is maintained and represented by the convective term Av in the
equation (3.3) of heat conduction of Fourier-Kirchhoff. The structural
mathematical linearization was found admissible only by virtue of the
chosen special case where

da _ d% _dA _ dA -
-&:-87:0,6;_&:0 (2.10), (3.5)
and
3v
Vy = Vg = 0; Bzz = 0 _ T (2.9)

Conversely, if the solution obtained in chapter 5, confirmed by the
experiments described in chapter 10, is substituted in the initial equa-
tion (2.2) of chapter 2, crossing out the nonlinear term on the left side
of the last equation, these equations, "linearized" in the same mechan-
icel fashion, will not be satisfied. One may convince oneself of this
by an elementary substitution. '

For simplifying the laborious computations it is advisable to add
a fourth operation to the three previously mentioned operations; namely,
the reduction of the equations to nondimensional form.

3. Case of Heat Losses Through Imperfect Heat Insula’c.ionl2

Chapter 11 discusses theoretical considerations and experiments con-
nected with heat losses through the walls along the channel in which
thermal convection is observed. These heatf losses give rise to deviations
from the strict assumptions from which we started in deriving the "funda-
mentsl” equations of chapter 3, and the reservations which were méHe_I—_
particular in section 5 of chapter 3. S

leections 3 to 5 were compiled on the basis of deta obtained by
N. M. Pissarev.
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We shall now take into account the structural nonlinearity of the

equations of convection and solve the problem more

choose a cylindrical system of coordinates such that the Z-axis coin-

strictly.

We shall

cides with the channel axis and' is in a direction opposite to that of

the acceleration of gravity.

The initial azimuth is choseh arbltrarily

on the assumption of the gbsence of transverse temperature gradients far

from the channel.

The initial equations of gravitational konvection in

cylindrical coordinate form for the steady regime are the iollowing

(ref. 1L of ch. 2, p: 50):

The Navier-Stokes equations:

vy ¥, ov: ov v, & -
Yo o SVx r_ Yo _ _Ll,09p
Xy v XS TRl eyt
Bv, . v, Bv, ; v,
V| ——— + — x + +—XF—-
arf  rB 3¢f  »E T % -
2,2 Ir
r2 00 r
v xav¢+leav¢+v xavq,+vrxv{p S L%
r” Jr T J¢ z " 3z T or = 3¢
2 28 2 3
3 o 1 a Vo 3 Vo 1 _8v¢
Wiz T 2t oty t
or T oo oz r
2
2 J V. T
ré 3¢ re
dvy v, ov .oV 109
_(p- Z Z___ P
TXE tT X3 e wm T & T
3%y d2y %y T 3y )
v( z .1 2. 2,12} _opp
arz r a¢2 22 r or
The Fourier-Kirchhoff equation:
% , 1 6 0 . [d% 1 1 . 3%
Vyp X 5 + - X Vo X 3 + vy X'EE =! S;§ + 7 x S + ;E X S;E

}(15.1)

TR?%
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The continuity equation:

ov v, v v
Sr_r._l.-]-'-xwtp E—E-[-—rz‘_—.o - (15-3)

In correspondence with experimental results (ch. 11), to go over
from the equations in partial derivatives to ordinary equations (in
total derivatives), we assume the following dependence of the axial com-
ponent of velocity on the vertical coordinate and on the azimuth:

Z
Vg = %(a + h §)(fo + f; cos ¢ + £, cos 20 + ) (15.4)

In this expression the first factor determines the dimension of the ve-
locity. In the second factor the nondimensional component a deter-
mines the intensity of the convection phenomenon in the section 2z = O
(it has the sense of the Reynolds number). The second component deter-
mines the assumed linear dependence of thils intensity on the coordinste
z (ch. 11, sec. 1). At the same time this component contains the non-
dimensional "monlinearity parameter” h. For h= 0 we have the lin-
earized problem, solved in the form of the "fundamental" equations of
chapter 3. In the third factor the wvelocity is expanded in a Fourier
series in multiples of the azimuth and contains the required nondimen-
sional functions only of the radius r-fo, fl, f2, . . e

Making use of the considerstions of symmetry and by analogy with the
preceding, we write for the radisl component

v
Vyp = ‘ﬁh(Fo + Fy cos @ + F, cos 20 + . . J) (15.5)
Similarly, we write for the azimuthal component

v, = -;- h($; sin @ + &, sin 20 + . . .) (l?.s)

®

From considerations of symmetry @0 = 0, the gbsence of uniform rotation

of the channel fluid gbout its axis is assumed. In the linearized case
the radial and azimuthal components were zero, since we had h = O there.

The continuity equation gives

vh 1 1
T[Fo""'fFO"'(FJ'_""fFl) cos @ +(Fé+%F2) cos 20 + . . .:]+
1 vh
= xT(@l cos ¢ + 26, cos 20 + . . ) + (15.7)

vh
(fo + £ cos ¢ + £, cos 20 + . . )=o0
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whence the following relations are obtained:
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Fy +Z Fo+ 2 £5=0 W
Fj +IF +T% +21f =0
F,{0) = &, (0) _ } (15.8)
Fé+%F2}§§2+%fz=b
Owing to the presence of & boundary layer, i
Fo(R) = F1(R) = &, (R) = &5(R) = £5(R) = £1(R) = £5(R) = . ... = 0 (15.9)

Substituting the assumed expressions (15.4) to (15.6) into the Navier-

Stokes equation (15.1), gives

vh2 -
R) (FO+Flcoscp+F2c0524p+...)x
(F6+F]'_ cos ¢ + F) cos 20 + . . o+
1
;(Cbl sin ¢ + &, sin 2p +— . J) %

(-F, sin @ - 2F, sin 2¢ -

1 . 2\ _
-;(@lsin(p+<§zsin2(p+...)}—
1,3  ¥2nbw 1oL ,
"Xt R { trfo-2 ot

1 2 13 __:_L. 1.
Fl - ;2 Fl)cos o + (Fz + = F2

=
+
Hi

5

-2 F

cos 29 -
5 15)eoe 2

(15.10)

TR2%
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2
(%?) {BFO +F) cos @ +Fy cos 20+ . . .) (@i sin @ + & sin 20 + . . ) o+
1
;(@l sin ¢ + &, sin 2p + . . ) (@l cos @ + 29, cos 20 + . . L) +
(Fo + F; cos @ + Fy cos 20 + . . .)(& sin ¢ + & sin 20 + . . o=
2
-1 Jp Yhfaen .1z _ 2 u 1l s 5
2 8
— F sin ¢ - 5 Fp sin 20 + . . . (15.11)
r T
ACIN (P (Fp + F +F
R a R 0 1 COB @ o COB 2p + . . .Y ox
(£ + £ cos @ + £} cos 29 + . . .) -
1 .
= (@l sin ¢ + & sin 29 + . . ) ox
(fp sin o + 2fp sin 2¢ + . . .) +
1 2
ﬁ(fo + f, cos @ + £, cos 20 + . . O\ =

2
xg—lzj+l’§_(a+h%)[f8+%fé+
c_ L
£y - 72 fy) cos ¢ +
4
ra

f2 cos 290 + . . .J - gpo

HlF  R|F

(15.12)

Equetions (15.10) and (15.11) do not contain members depending on the
vertical coordinate =z; therefore,

(15.13)
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It follows that the expression Op/dz, encountered in equation (15.12),

does not depend either on the radius

pends only on the vertical coordinate

r or on the azimuth . ¢ but de-
z. By analogy with the previously .

discussed case of the superposition of free and forced convectlon in

correspondence with equation (5.33),

op
dz

= -

Differentiating equation (15.12) with respect to the radius r, we elim-
To facilitate the computation, we first trans-

inate the pressure p.

we assume

pgRAZ (15.14)

T82%

form this equation by carrying out the multiplication and grouping the
terms with the ssme function of the azimuth, where we consider the fol-

lowing relations:

2 gin® ¢=1- cos 2¢

2 cos2

2 cos ¢ x cos 2¢
2 sin ¢ x sin 2¢

In this way we obtain
vz(; + h %)
"
gho = — = [%O +
1 1
o7 3f1 - 7 &fa

1
[+

1
7 ®1fp -

"
[e5 +

1 2
-Z—rqblfl + R fofz +

R

Al
fO

2
fq +

] o

1
r

f!

1
-=rf
17271

2
R fof1

1

h

1

4
=f! - = F
r "2 2 2

R

=
2R

vz(a +h %P
= {?0 + Cy cos ¢

=1+ cos 2¢

h '
- E(Fofl

- = t 1
(fofz + F ! +

f?_)]cos 20 + .

j

(15.15)

cos ¢ + cos 39

=

cos ¢ - cos 3¢ _J

1
+ Flfo +

1

+

1
2%o F £
. .} + gBAz

=

+ Cp cos 2¢ + . . } +-gPAz -

(15.186)



4281

NACA TM 1407 127

2( pA
6 v a+h§) 1
== =R g (15.17)

where the symbol{ } denotes the derivative with respect to the radius

Further,

r of the expression in braces in equation (15.16). Further the same
symbol will be applied to the following derivatives of the same expres-
sion, with respect to the radius and the azimuth.

We now substitute the obtained expressions in the Fourier- K:chhhoff

equation (15.2), so that
vh !a+h—-!
—R—(FO+F1 cos @ + Fp cos 20 + . .
h_ H
v v!a+ =
x-ﬁ-(q:l sin ¢ + &; sin 2¢ + . . .) PR
+ h fa + T + T 20 + . . .
( )( 0 1 cos ¢ 5 cos 20 [ gBR{}]
a+h

After dividing, this equation is rewritten as

"
{}.(.-i‘-.{} {} fo+flcosq>+f2c052¢p+...)—
T

v hil
’_(xﬁ[r—{(fo+flcoscp+f2c032¢+. ){}

—i‘:(q:lsin¢p+q>zsin2cp+. . .
(FO+Flcos¢p+F2cosch+.. {}J

In view of the great complication of the equation obtained, it is
hardly worth while to interpret the equation in its general form.

1
r

(15.18)

(15.19)
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4. Case of Axial Symmetry

We shall now dwell on & particular case which is distinguished by
its evident simplicity. We assume that the entire phenomefion is sym-
metrical gbout the Z-axis. This case 1s experimentelly observed within
the heater that heats the model (e.g., fig. II). In this case

fl=f2=---=Fl=F2=...ﬁ@l-@2=...“=07
ov
Z } _
S=0 g(ls.zo)
30 _
3= ° J

Only two nondimensional functions of the radius, fo and @0’ are re-
tained. Equation (15.19) is then rewritten as

1fowslpn - L or _ Blaier W2 oo
Ef"o rfo-2% 'R(Fof * Fofo +x® Tofo

1 2 2 h
g5V + 7 EN - Z - R(Fofo + 2F4ES + Fofh' +

2 o 2 12Y_ 4 hll 1 1.
® fofo * RfO) kfo'Pr"Rl;afo(o*'rfo

h h 2 1
ﬁFofé--R—z-fo)+Fo(f8'+-‘fo-—-2-f6-

Eﬁ'éfé + Fory + £ fofé_-])] =0

It can otherwlise be expressed in the following form:

4 b L
AAfo—kfo—RPr[ fo(fo+rfo')+

o] fag

(15.21)

2
Fo(frn sley- fé)] * %(Féfé *FGES + 2 fofé) +

2
(FSfé + ZFéfS + Fof8'+ R f f" + ﬁ £4 )

h|l 1 .2 2
(15.22)
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where there was set

IV 2 i 1 n 1
+ =7 - A + = A = AT
5 r 0~ re 0 0] o]

o
Y >
%= Pr (15.23)
4 . gBA
k Vi r)

From equation (15.22) it is seen that if h = 0, we have the previously
discussed case of the "fundamentsel" linear equations (3.9). However, if
h is different from zero, it is necessary to solve the nonlinesr
equation (15.22).

Applying the method of successive approximations for this purpose,
we expand fo and FO iInto sums of unknown functlions of the radius r,

in powers of h:

0 (15.24)
=fo + hty] + 0% + . . .
Substituting these expreéessions in equation (15.8) gives
' 1 1 -
So*FS R Y
1 1
tf +3 L +F ¥ =0 (15.25)

Substituting equations (15.24) and (15.25) in equation (15.22) and
equating the coefficients of like powers of h, we obtain the following
set of equations:

My - Ky = 0 (15.26)
oy - Ky = %r[ ¥o(¥8 +3 %)+
) (qr"r Z V¥ - 'r—z’ \ifé)] + ;(C(')‘Fé + Ea¥bg + R Wo\lfc')) +

1 m, 2 " 2 .1
Eo¥o * 280¥ + So¥o * ® Yo¥o T R 14’o}
(15.27)



130 NACA TM 1407

l l 7" 1 l " 1
2ay, - iy, = §%r[§ uro(wl + 2 wl) £z url(uro 3 wg) +
1"y l " 1 1 1"y l 1 l ]
_3;g1 O RV S A n+_2_ 1+_2_ :)-_'_
r(-OWl 1% T So¥1 t 5% R Yo¥i TR WiV

Eou + G + 265w + 2Liug + Eoult + Lout +
2 " 2 " & o0 _ L1 1 1,2 '
EV¥o¥1 TRV tR VoV1 T 7 11"c‘(-go“'o + R q’o) +

Co(éé% + Eo¥l + E wowé)}
(15.28)

Equation (15.26) agrees with the previously discussed linearized
case, equation (3.9). In the other equations we obtain a system of non-
homogeneous linear biharmonic equations in the unknown functions *1’

Vos <. On the right sides of each of these equations, functions pre-
viously defined from the preceding equations appear. All functions ¥
and § are even functions of the radius. The equations must be inte-
grated under the general known boundary conditioms: Each of the func-
tions must be finite, continuous, and single-valued; it should give zero
in the boundary layer at the channel walls and should satisfy the con-
dition of "closedness." TFor example:

o .
Zﬂ\/r\ yyr dr = 0 ' (15.29)
0

Equation (15.28) in regard to coinciding with the "fundamental"
equation (3.9), should give the following solution for axial symmetry in

the closed channel:
valdo(ikr)  Jo(kr)
Yz = R |JoEKR) - Jo(kR)

kR = 4.611 (15.30)

(kR)* = 452.1

827
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Whence by equation (15.8) for the radial component, we obtain to a first
approximation

h 1 [ -id1(ikr) J1(xr) h
=g X EE TRy ¢ Jo(kR)] =% %

(15.31)

By substitution it can be confirmed that this radial component gives the
value zero at the wall of the boundsry layer (for r = R).

In computing the functioms V¥, ¥,, ... from equations (15.27),
(15.28), and so forth, the following feature is revealed. The general
solution of eguation (15.27), for example, is the sum of the solutions
of an equation of the form (15.26) (homogeneous) and of any particular
solution of the nonhomogeneous equation(15.27). The first component of
this sum satisfies the condition of closedness (15.28). The second com-
ponent, however, may receive the following form. It 1s necessary to
represent the required particular solution and the right side .of equa-
tion (15.27) as a series of suitable orthogonal functions. By equating
the coefficients, the coefficients of the required series are found.

In the given case, the suitgble orthogonal functions are the Bessel
functions of the first kind of zerc order. They easily give zero at the
boundary snd therefore already satisfy the condition of the boundery
layer. They likewise satisfy the conditions of finiteness, continutity,
and single-valuedness. However, the obtained series will not always
satisfy the condition of closedness (eg. (15.29)) but will satisfy only
for a singlie value of the fluid parameter Pr. Because the right side
of equations (15.27), (15.28), and so forth, are linear functions of
thls parameter, the required series and the condition of closedness will
likewise be the same linear functions of the parameter.

Whether this single (real) value of the parameter Pr really exists
(in particular, as & positive quantity) or whether it requires fantastic
fluid properties is a question that is as yet not clear. However, the
value of this parameter, obtained with the aid of equation (15.27), will
certainly differ from the value of this parsmeter obtained with the aild
of equations (15.28) and so forth. As a result, a contradiction is
obtained. '

In this way we arrive at the almost certain result that in the axi-
symmetricel case (eq. (15.4)) the proportionelity of the vertical com-
ponent of the velocity v, to the binominal (1 + h z/R) is actually not
reglized. Similar cases and cases experimentally observed correspond to
some other nonlinear dependence of this verticael component on the ver-
tical coordinete z or to some other value of the parameter kR, dif-
fering from 4.611 (eq. (15.30)).
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The hypothesis (eq. (15.4)) applied to the axisymmetrical case may
be conslidered no more than a very rough initial approximation. Further
on, several computations meking use of this hypothis will be gilven, but
the significance of the conclusions from these computations should not

as yet be exaggerated.

In view of the complicatedness of the process of the solution of
the preceding equations, it is desirable to clarify important physical
questions by which this solution is avoided. Perhaps the most important
question is that of the thermal conditions on the boundaries at the
channel walls, which are the cause of the nonlinear phenomenon pre-
viously described.

Let us multiply each term of equation (15.2) by an element of vol-
ume r dr 4d® dz and integrate between the limits of a layer of the
height R. The last term on the left side will then give, considering
equations (15.20) and (15.18),

R 2= [R 0 Z (R vZh
v, X Sz r dr & dz = 2xR vy (A + 5 r 4r
0 0 6] (o] gBR
. Z .
R v2n v(a+h§) R
= 2nR | A vy,r dr + 5 X by ridr
0 gBR R ~Jo 0

where the first term in brackets is equal to zero, owing to the "closed-
ness" of the channel. The first term on the left side of equation

(15.2) will give

an vz!a + h %!
= 1
?rdr do dz—ZﬁR PR {}rrdr
Z
2 v‘a + h —) R
veéh _ . R
= 2nR 2PR x = ~L A FO{ 1" r dr

Iff the last integral is integrated by parts, we obtain

Loy Lt [ ol

(15.34)

(15.32)

(15.33)

182%
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The substitution here vanishes because of the presence of the boundary
leyer. The transformations are made on the basis of the continuiity equa-
tion, in particular equation (15.8).

Thus, both remaining terms on the left side of equations (15.2) to
(15.18) are equal to each other. The physical sense of the expression
(15.32) is defined as the heat transferred per second by convection up-
ward from a lsyer of height R. The physicel sense of the equal ex-
pression (15.33) is that it is the heat transported by the radisl veloc-
ity coumponent from the periphery to the inner parts of the fluid.

After integration, the right side of equations (15.2) to (15.18)
glves

R 23C R 3
k/’ t//w ®NPr dr dp dz = -xanz(_Q) (15.35)
0 0 0 dr/r=R

where the Ostrogradsky-Green theorem was applied. The entire equation
(15.2), after integration and substitution, gives

v3hi{a + h 2 vé(a + h Z
R 2 R !
4%R £ r dr = -2xR%
gBR3 o © r=R

gBR r
(15.36)
whence, the parsmeter of nonlinearity h 1s determined as
(]
he - X B riR (15.37)

v 2 U/ﬁR .{
T }r dr
0
0

On the other hand, the heat transferred by convection through the section
z upward is equal, by virtue of relation (3.23), to

R
Q = pc21tf v,0r dr =
O
v2{a + b =
a+hi folAz + R{ r dr =
gBR

Riso

3 2 [®
- 200 (, 4 0 2 fo{}r ar
gPBR o)

(15.38)
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The term with A drops out because of the "closedness" of the channel.
Over the distance of one centimeter of the channel height this heat in-
creases by the amount

R
z = 4xpc ML[ fo{}r dr (15.39)

gBRO

Substituting this expression in relations (15.35), (15.36), and (15.37)

gives
+ h R
Ba_czi o R [{}] - 'Z“m(%%)mla (15.40)
and
o)

- z
R(B. + h—B;)

The last equation connects the parameter of nonlinearity h with the
experimentelly observed intensity of the heating (or the heat losses)
through the channel walls.

The following further circumstance must be considered: The ex~
perimentslly observable vertical gradient on the periphery of the channel
cross section differs from the mean gradient A which plays an impor-
tant part in this theory. In fact, limiting ourselves to the first term
of the expansion (15.24) and making use of formula (15.16), we find

06 _ v&én ( )
(SE)mR = A+ g\ ¥ "’o (15.42)

Further, taking into account formule (5.38) end substituting in place
of Y, 1ts expression in terms of the Bessel functions (5.35) to (5.36),

we obtain
89) v 2n
= A - —% (&) g =
(EE r=R gBRZ 0/r=R
2

v2nk2[Jo(ikR)  Jo(kR) | A vZn(xR)
2pRZ| Jo (1KR) G Bl PR

2Pr x h
AE‘ZPr" )2] [ 213]

(15.43)

T82%
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For water at a temperature of sbout 20° C, Pr = 7. Substituting, we

obtain
(%), - A[l - & h] (15.44)

where the term in brackets represents the relative decrease of the ex-
perimentally observable periphersal vertical temperature gradient as com-
pared with its gradient averaged over the section. Hence, for a certain
value of h it may be found that this gradient is equal to the vertical
gradient which corresponds to diametral antisymmetry. This is obtained
when

4
diam
4
axial

() ,
() - 3 h

For glass models (kR) ~ 100; (xR)%

diem axisl = 452.1; whence

3 100
h=3\1-2:201) = 1.17 (15.45)

Por this reason, in the case of an annular heater coil wound directly on
the glass, the convective flow spontaneously changes from diametrally
antisymmetrical over the heater into axially symmetrical inside the
hester. The last equation (15.45) hardly reflects accurately the value
of h (it msy be expected that actually the corresponding value of h

is less), but the phenomenon evidently has this character.

5. Case of Diametral Antisymmetry

As a second example, let us consider the more complicated case of
diametral antisymmetry of the fundementsl flow, previously qualitatively
described in chspter 11.

Because all three coordinates now pley asn essentlael part, it is
necessery to make use of the earlier derived equation (15.18), in all
its complicatedness. However, since on the basis of the experimental
results of chapter 11 the antisymmetrical form must be considered as the
basic form of the phenomenon, we now assume in equation (15.4) in place
of equation (15.20), '

fo << £y >> £y (15,4§)
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There is then immediately obtained from equation (15.8)

FO << Fl >> FZ -

(15.47)
& >> %2

Since for h = 0 all the enumerated functions vanish excebt fy, we now
apply a new notation, and in place of o

T82%

fo, fz, FO’ Fz, and @2
we shall write
hfo, hfz, hFo, th, a-nd- h‘!’z

Moreover, we set
fl=1,fo+h'llfl+h2ﬂf2+- . e
Fi = o + hty + hB, + . . . i (15.48)
&y = ap + hoy + hiwy + . .

The expression in braces in equation (15.16) then becomes

wob o Blla. .1 "
Co = hfy + 7 £§ REqFofo+2(§O+h§l+...)(qro+hxyl+...)+
bt ey - Lo Yo + B )
'§— zfz'-"z—r'(.l)o'l‘lm)l‘l‘-..('lyo'l' \lfl+-.. -
he ¥ 5 1., n? 5
?¢2f2+ = fo+2R(wo+2hwoa)l+ e e + 55 5

- o, Loy o 1 L 2 —
_hEO"'rfo'zRgO‘Vé*'grR“)O‘yO'ZRZU’CZ) +

hz[} FCoh + Q%) + Zlegh + ervg) - 2 “b“i] e
(15.49)

at
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1 h he 1
Co=¥ +hil +eBL + T T T T V- F Yo o
2
h h .
%“Vl"r_s"l’Z‘—ﬁE’FO(wé"'h‘Fl"" ..+
. '
(;0+hgl+. . .)hfo+2(§0+h§l+. . .)f2+
I
h 1 4 E
§F2(¢o+h\lrl+. . ) - 7l + bay + . . )fp -
%@2(w0+h\yl+. . .)+%fo(¢0+h¢l+. . L)+
h 1" l 11 l
1
E’J’%‘Vi ‘Vl:‘+h2E’2 ¥5 - 72 V2 -

1
‘Vofz + 3 Fz“'o - %t -

+

(Fo‘l’o * Lofd

1 2
7r ¥2% * g foYo T R ‘l’ofz):l +

h 4h
— " faied T _ 2
Cp = bfj + 7 £5 - = £, - Elef'+hF2f6

1

§(§o+h§l+---)(‘lf(')"‘h‘l’i"'---)"'
= (g + + Y(¥g + hiq + ) 2h2 o
o= (ag +hay + .« )(¥g + By + . . )+ =g fotz ¥
l 2.8 N P e
ﬁ\yo+3\[r01{rl+...]_h[2+rfz r2f2

1 1 1
z& So¥o - zr® “o%o T ZR o] +

ne

1 ) '
T[’ (Lo + 1¥) - Zr( ot + @ ¥o) * 7R ‘L’o‘*’l] ..

137

(15.50)

(15.51)



138 _ NACA TM 1407

Substituting these values in the Fouriler-Kirchhoff equation (15.19), we
obtain the successive coefficients for the different trigonometric func-
tions of the azimuth in the followlng form:

For cos O:

n
C0 +

H =

4 hlh .

C(') -k hfo - Pr X RE foCo +
1 1

(Vo + h¥y + . . .)Cp + 35 hfgCp - _

1 . h -
-Z—r(d)o + hLL)l + L. ')Cl - 'é‘;@zcz + hFOCo' +—

Il
o

%(go +héy + . . .)C] + % thcé] .o
(15.52)

For cos ¢:

w1 1 4 oy hih
Cl+-£Ci—-l'—2-Cl-k(wO+hqfl+. o) Pr-ﬁ[ﬁfocl+

%(‘l’o"'h‘l’l"‘ . . .)CO+%(1¥O+hﬂfl+ S [ s

h 1 ) h
55 201 +-§;(w0 +-hoy + .. .)Cz + 3= 8,0, +

(Lo + hly + . . .)C4 + HFGC + 5 hFpC{ +

%(go +hty + .. .)Cé] + .. .=0

(15.53)
For cos 3p:

nopd 4 dpr . pr 2|8 i

1 1 '
Z—R'(Ip’o + by o+ ')Cl + é?(wo + hay + .. .__)Cl + thco +
hF4C4 l( + hiy + el + - - =0
O 2 + 2 go Cl - - - O 3 - - -_

(15.54)

T92%
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In these expressions the auxiliary functions Cp, Cl’ and Cop in the
new notation have the followlng meaning: ' C

1 1
Co = bhafg - —§E12FO:E‘(') +§(§o +héy + . - (¥ + hv] + .. )+
T (ap + oy + Y(¥q + By + )
> Fofp - 22 + <. 00 R
h2 2 2 . 1 2 , h® .2
?'q’zfz +—R' fo + -Z—R(\yo + hﬂ[l + . . .) +ﬁ fz

(L, .+ _ 2 1.2
= h[Afo - ﬁ(’z’ Eo¥o ~ Zr “o¥o T 2R 11'o):‘ -

2
n2[1 1 1
'E[Ez'(gl“’c') + to¥) - g * o) TR “’o“’l-] e

(15.55)
Cy = A(yp + by + . - .)-%E:Fo(w6+h¢i+. . .) +
(§O+h§l_+ . . .)hf(‘)+-32:(§o+h§l+ . . .)hfé+
1 . . 1
5 WFp (¥ + byf + - - ) - Flog + oy + . .)hfy -
ihcp(\y + hy, + )+—2-hf(11r + hy, + ) +
21' 2 0 l =t R 0 O l - &
%(qro+h¢l+. . .)f2:|=A(\lro+h\yl+ c e ) -
n’

1 1 1
=\Fotd + oty + 3 Sof2 * 3 Fa¥p - 3 wof2 -

1 a 1

(15.56)
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Cp = hafy - B|nZrors + hBFprg +

e T I S V(S G S I
%(ab+hw1+ cov Do Fhy .. L)+
h
ZR fofz + ZR(wO + h\]rl + . . .)2]

(i, .,
= h[Afz - §(§ So¥o * 2r ®o¥o * 25 “’o)]

2
%—[%( Eo¥y + £80) + ety +orv) + 3 urourl] +
(15.57)

Now, grouping the terms of equatlons (15.52) to (15.54) with the same
power of h, we obtain the following:

Terms not containing h:

MY - Ky = 0 = (15.58)
Terms containing h +to the first power:
1
DTG - kEEG = (ﬁo‘lfo - T %o¥o t | ‘F%) +

hil . 1
Pr x z_R('ﬁ Yol¥p - T @ohVo + §_0A’4’c5)
(15.59)
Mgy - Ky =0 - (15.60)

4 1 1 1

Er‘(“l’oﬁl‘l{o + 7 wolvo + C.OA%)
(15.61)

182%
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The remsaining equations have a more complicated form. In equation
(15.58) we recognize the "fundamental® equation. The remaining equations
enable the computation of the functions fp and fy. We note that the

correction to is found not to be below the second power of h, since
the equation for ¥, does not differ from the equation for vV, and

therefore does not give "corrections" to the last function. That is, we
may assume Y, = 0. :

The various functions encountered in these equations are connected
with each other by the continuity equation which, in the new notation
considering equations (15.8) and (15.48), is written in the developed
form: .

F’+£F +']:‘f = 0 w
otr o tR Ig
v 1 2 Ll _
Fy+TF, +28, +3 £, =0
1 1 1 (15.62)
1 = = = —
o tT St tRY=0
r L X 1 pa -
LrFhfFo =0 o

In addition, it is also necessary t0 bear in mind the following re-
lation. If equation (15.10) is differentiated with respect to the azi-
muth, and equation (15.11) is differentiated.w1th.respect to the radius,
we obtain the following two expressions for 32 p/araw.

1 dp _ vén 2 .
5 x 556 " @m (—AFl + ;E @1)51n ¢+ . ..

(15.863)

Ny

h 2 4

= als-N Fl + = Fein o + . . .
( 1- rz 1 3 J)

where only the terms with the factor h sin ¢ have been retained.
Hence, in the new notation, the terms containing the first power of h
have the coefficients:

R R e R 3%
(15.64)

R
R
o
bol
&
+
"l
&
It
-
sl
&
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Substituting a, from equation (15.62) in equation (15.64), we obtain

@=-F¥-bt-rts )
5 ,m. 1 ,» 3 ., B
5 + 2B - St - b ? (15.65)
L o omp 2 vy 1y 3
"R TmY T EZ Y 53 Y )

The solution of this system of équations must be used in the right sides
of equations (15.59) to (15.61).

From this it is seen how laborious is the work on the solutlion of
the nonlinesr equations of gravitatlonal convection even within the
limits of the first approximation (i.e., the first few powers of the non-
linearity psrameter h). However, the method of solution that leads to
the solution of a system of linear equations glves a clear perspective
of how the result is to be attained.

In conclusion, it is useful to remark that the order of operatlons
which is presented here evidently saves a maximum of computational work.
It would perhaps have been more strictly logical to have made a substi-
tution of the different powers of h directly in the initial hypotheses,
equations (15.4) to (15.6), and not in equation (15.18) as was done in
equations (15.18) and the following. What has been done here represents
a double introduction of the same small parameter h. The results ob-
tained by both methods are the same (sec. 2).

6. Convection in Horizontsl Channel of Round Cross Seétion15

As 8 third example we consider the plane convective motion of a
fluid arising in an infinite horizontal channel of round cross section
bored in an infinite homogeneous solid surrounding block. In this block,
by mesns of heat sources and sinks situated at an infinitely large dis-
tance, a temperature gradient constant in time is produced perpendicular
to the channel axis. At a great (as compared with the channel dismeter)
distance this temperature field is homogeneous. In the neighborhood of
the channel this homogeneous field will be distorted. For a stationary
fluid the distortion will be in. its molecular conductivity, and for a
moving fluid the distortion will be in its convection as well as in its
moleculsr conduction.

13This section was complled from data obtained by E. M.  Zhukhovitski.

T82%



4281

NACA TM 1407 143

We choose the axes of coordinates as shown in figure 49. By the
conditions of symmetry,

v, = 0] N

%g =0 } (15.686)
avy _ vy _ o
9z  Jdz S

The equation of a streamline has the form, in Cartesian coordinates,

dx _ &
Vx vy
(15.87)
vydx - vydy = d¥ = 0
and, in poler coordinates,
dry rl_dCp
T e
(15.868)

derl - rlvrdw = 4dY = Oi.

. where the symbol ¥ denotes the stream function. It is evident that

dy _
= v

N

or $ (15.69)
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This transformation is possible if d¥ in equations (15. 67) or (15.68)
is g total differentigl; that is, if

i _ ovy - vy
xSy  ~ dy =~ Syox Ox
(15.70)
2y av@ 2y ovy e

Brlatp B(p = B(parl = rl aI‘l

The preceding equations colncide with the equatibhs of coﬂtinuity in
Cartesian and polar coordinates; respectively: '

v v
I+ X=0
o (15.71)
ov,. V. av(p

Thus, the introduction of the stream function 1s admissible.

The streamlines are characterized, according to equations (15.67)
and (15.68) by the fact that along them 4¥ = O (i.e., ¥ =_constant).
The greater the veloclty, the more closely packed are the streamlines.

In order to use the Navier-Stokes equation and to eliminate the
pressure gradient from the equation by applying the curl operator, we
compute the curl of the velocity:

dv, avy )
[VYJX Sy = = 0
dv. 3v
[Vl =5 - & = O > (15.72)
e}
(vl, = ok - S Y Yy
X Sy k2 3y J
Applying the curl operator to the Navier-Stokes equation we obtain
-[vVlv[wv]1l] = valvv] + B[veg] (15.73)

Substituting equations (15.69) and (15.72) in the preceding equation, we
obtain the following scalar equation (the component on the z-axis of
eguation (15.73)):

.552(% AY) - %@% AY) vy - gp 0 (15.74)

182%
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or, carrying out the differentiation and multiplication on the left side,

Y _ JAY _ OF , OAY _ 0
.a?x&_—&xsy-_vAA‘!—gBE (15.75)

The Fourier-Kirchhoff equation is now rewritten as

dv _d® Jdv ., 96
25?x&_&xa?=me (15.76)

We pass to polar coordinates by means of the following well-known X
formulas:

S _ d 1 d
r Rl ~ei - T*
(15.77)
a = gin ¢ a + i- cos ¢
Fy’ 551 I‘l &5

The system (15.75) and (15.76), expressed in polar coordinates, then
reads T

1for dny Q¥ | GAY
T{\0¢ = Jr = Ory 3o
3

= VMY - gB(;%i cos @ - %‘% X % sin q> g (15.78)

1oy 08 _ o¥ o8

The continuity equation has already been employed in forming the strean
function ¥. It is assumed that the equations heve been parametrically
linearized (ch. 2, sec. 2). Co-

We have obtained a system of partial differential equations of a
higher order (of the fourth order in ¥ and the second order in 8),
nonlinear but homogeneous, and with constant coefficients (within the
limits of parasmetrical lineerization). It must be solved for those )
boundary conditions which were specilally considered previously (ch. 4,
secs. 1 and 2). With the introduction of the new function ¥ these
boundary cornditions are formulated as follows: )

(1) Within the cross section of the channel (0 € ry € R), the func-

tions ¥ and 6 are finite, continuous, and single-valued, with the
required number of derivatives. ' ’
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(2) At the wall, for ry = R, there is an adhering boundary layer
of the fluid (eq. (15.69)):

I
(@)

(53)
E;z I‘l=R

(g%)rrsR

(3) Within the boundary layer there are no jumps of ﬁemperature and
of heat flow:

(15.79)

I
(@)

9r1=R = eerl==R

Br—l ri=R - rl_

(4) In the neighborhood of the channel there are no heat sources
and no sinks:

(15.80)

N_ =0 _ (15.81)

(5) At infinity, the temperature gradient is given as

(9, .-

59,

r l—"“’

> (15.82)

7

For convenience of solution and without restricting its gegerality (since
only derivatives are encountered in the equations); we assume that ¥
vanishes at the wall: ' '

¥). =20 ’ 15.83
(%) n © (5.83)
To simplify our further discussion, equations (15.78) will be reduced to

a nondimensional form. As a scsle for the length we shall choose the
channel rsdius R, ahd as a temperature scale we shall choose the product

AQR ="R+/a% + B2 o - (15.84)

T8gy
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Moreover, we set

I‘l=RI‘ \

KF(r)(P)

¥(r1,0)
e(rl:(P) = AOR‘&(I':(P)

gBAGR*
8P

r (15.85)

= Gr x Pr

£t = -

S

The connection of the stream functions in terms of x and not v, as
would be expected from the form of the equation, is determined by the
convenience of the further computations. Here r; denotes the ordinary
radius, r the nondimensional radius, ¥ the ordinsry stream function,

F the nondimensional stream function, 8 the ordinary temperature, and
34 +the nondimensional tempersture. After reduction it is found that the
entire nondimensiongl system is now determined by the single nondimen-~
sional parameter 54, having the criterional wvalue

1 ;(BF WF  OF _ F) )
MF =X\ *3r ~r* /)

£(32 cos o - £ 32 ain ) > (15.86)

ifeF 3 _oF 3%
r\dp  Or Oor = O¢

S
Because A, denotes the arithmetical value of the square root in equa-
tion (15.84), 54 is essentially positive, since B is usually negative.

Al =

It is useful to observe that through the parameter g* a relation
is established between the mechnical and thermal aspects of the phenom-
enon: The sbsence of thermal phenomena (Ay = O) or the sbsence of their
effect on the mechanical side of the process (for B = 0, v =« or
H = ”) leads to the value 54 = 0. This velue corresponds to the fact
that both equations of the system of simultaneous equations (15.86) are
converted into independent equations that do not constitute a system.

It is also necessary to remember theat, in virtue of the assumption
of parametric linearization of equations (15.86), they automatically be-
come invelid for large values of 'gé. For this reason, it is desirable
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to seek a solution in the form of a series developed in powers of 54
We set N

F=gtr(d) gsF(z) + .
3 = ,ﬁ(o) + 5‘46(1) + 586(2) +
= 380 + g2a(1) + £B4(3) 4+ |

F(O) =0 -

(15.87)

N

[
(0]
I

_ S
The essential idea of the process of solution is that the solutions in
the form of the series (15.87) are substituted in the equations of the
system (15 86). By comparing the coefficients of equal powers of E )
equations of the following form are obtained:

aar(®) = £(a00); 5(1), 51, §(2), (&), .. )
(n-1)  5(n-1)
) f & > (15.88)
A@(n) = fl(a(o); F(l), é(l); F(Z), 6(2);
.o . r(e-1) ) 4(n-1)) Y,

The functions f and f; embrace the functions F and 4 of differ-

ent indices, ag well as their lower derivatives. The first equation of
these equations represents a two-term biharmonic linear equation with
constant coefficients, nonhomogeneous, containing the already previously
defined known functions on the right side. The second eguation repre-
sents the elementary harmonic equation of Poigson. In principle, there
are no obstacles to the solution of these equations, a solution always
exists. In regard to the solution of these equations, the following is
useful (ref. 1).

Any function FO, satisfying: the homogeneousﬂbiharmonig equation
MFG = O . (15.89)
can be represented in the form —
Fy=-f1 + réf,, . (15.90)
where fy and f, are harmonic functions. Any harmonic fﬁnction f,

finite ineide a given circle of radius r = 1, can be preserited in the
form of the series.

[ ]
f = :E) r?(a, cos n¢ + b, sin ng) (15.91)
n=0 :

827
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Hence, the solution of the homogeneous biharmonic equation (15 89) can
be presented (in finite functions) in the form :

F= ;)[rn@-n cos mp + by sin mp) + r?*2(ay, cos ne + by, sin n(p):l

(15.92)
Further, we note that
MA(r2) = a2(a - 2)2 ra-t . .
M(r® cos ngp) = (82 - n2) [(a - 2)% - n®}r® % cos no (15.93)

M(r& sin np) = (82 - n2) [(a - 2)2 -~ n2jra-4 sin no

The solution of the nonhomogeneous equation (15.88) is the sum of the
solutions of the homogeneous equation (15.89) and a particular solution
of the nonhomogeneous equation (15.88), where the sum must satisfy the
boundary conditions. The requirement ¥(R) = O (eq. (15.83)) was intro-

duced to simplify these boundary conditions. e

Applying these considerations to the harmonic equation for the non-
dimensional temperature ¥, we arrive at the same conclusions, except
that in place of equaiion (15 93) the expressions obtained are more
simple: ‘ R

A(r8) = afra-2

A(x® cos no) = (&% - n2)r® 2 cos no (15.94)

A(r2 sin ne) = (a® - n2)ra2-2 sin np

In order to satisfy the boundary conditions of equations (15.81) and
(15.82), we set

6&0) ﬁ% r cos @ + ﬁ% r sin ¢ h

(-]

‘ﬁén) =Z: r'm(cm cos m@ + dy sin me) > (15.95)

m=1

n l, 2, 3, - . . - - )

We shall use these preliminary computations for the particular case
where

(ggg)r-r- =B=0
A= A ,

(15.96)
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that is, where the heating proceeds only laterally and the vertical com-
ponent of the temperature gradient is zero at infinity. The substitu-
tions and computations give the following results:

Zeroth approximation:

\
F(o) = 0; VJSO) = vqgo) = 0
Arq cos
6(0) _ arsf0) _ 5 __l__{ﬁ .
1 +xg ' & (15.97)
1 A
0 (0) AR® " Xe
Gé ) = ARY. "' = Ar; + 1 x —5 |cos ¢
1+
e J
First approximation: B
\
F(l)= 1 (-5’2:+r2-%r4)
16(1 + 7%-)
e
E4
vgl) =05 v{¥) =X x AN r(zr? - 1)
8(1 + 7\._)
© ~(15.98)
4 (L + 22/A
9(1)=AR——£————r-2 /e)+3r2-r4 sin ¢
A 2 1+ R;)\e
96(1 + l_)
(=]
A _
Gél) = —AR————/E—?xgé%sinq)
48(1 + -)-}-)
e »

T82%



4281

NACA TM 1407 151

Second approximation:

F(z) = Mrz(—ll + 24r2 - lSr_4= + 2r6)_sin.2¢
vgz) = % 58 aMr(-11 + 24r2 - 15v% + 2r6) cos 2¢
véz) - % £ 2Mr(-11 + 48r% - 45r% + 8rb) sin 20 ‘

2 , . \(15.99)
2] = ARESM r[(-al + byr® - eqr™ + dlr6 - er8) x

cos ¢ + rz(az - bzrz + c2r4 - dzrs) cos 3%[}

(2) _ 8y L L s

ee = -ARE°M T|\ag cos @ - bz ;E cos 3@

~

In formulas (15.99) the following abbreviated notations are used:

vy Vz(-l) + ngz) ...

(1) (2) (15.100)
_ (1 2
v(p_.vcp +V(p + .
2 )
1 A
T = 184 320(1 + re)
x G N "
101+426—+153(—) 109 + 229 11 + 16 =—
= e . e
4(1 + —) 2(1 + r) (l + —)\—)
)‘e e e
A
4 35 1 5+6%
S YT S R N GG -
(o) frw) x
e e e
3 3 _ 1
bz = % ez = Vv 92 X
l+r 2(l+r) 6(l+x—)
e e e
16 - 27 =~
x A A 1
=%, 3 B3 =% Z
e A e A
(l+-.x—) 3(l+i—)
e e

(15.101) y
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Similerly, the third approximation, which will have a stlll more com-
plicated form, may be computed.

Judging from the physical side of the convec%ion process described
by these equations, & value of the parameter E of the system (15.86),
for which it would not have a finite solution, does not exist. There-
fore, in analogy with the case of heat transfer through layers, it must
be assumed that no restriction on {4 are imposed within the limits of
the parametric linearizatlon. The power series (15 87) converge cer-
tainly only for the values g < 1. Hence, for g =2 1, these solutions
may give divergent series. However, from the example computed previously
up to the second approximation, the practical convergence of the series
(15.87) is very strong. Apparently, the limits of applicability of the
solutions in the form of the series (15.87) may thus be relisbly decided
only by experiment.

T82%

The obtained solution, permits the following physical .interpretation.
In the zeroth approximation no motion of the fluid is alloWed (i.e.,
there is no convection). The fluid £illing the channel behaves ther-
mally as a solid body, with & different heat conductivity from that of
the surrounding mass (typical problem of the theory of the potential).

As a result of the tempersature distribution, which cdfresponds to
the zeroth approximation, a very simple form of the convection currents -
arises in the first approximation; namely, the circular form (eq.
(15.98)). The fluld rises along the hot wall and descends along the _
cold wall. The streamlines are closed circlés. The radla; component of -
the velocity is zero. In the central part of the chaennel the fluid ro-
tates almost like a solid body. ‘In connectlon with this motion a verti-
cal temperature gradient arises in the channel snd in the channel neigh-
borhoo? (through sin ¢), the gravitational-thermal effect {ch. 16,
sec. 1).

As a result of the additional change in temperature, which is de-
scribed by the first approximation, a radial component of the velocity
arises in the second approximation (eq. (15.99)), and the temperature
field becomes more complicated. A dependence on three times the polar
engle ¢ occurs. Because M 1s very small, of the order of 107, the
radial velocities attain the same order as the velociltiles Qf the circular

motion of the first approximation for the values
g4 = Gr x Pr = 2x10° ' ~ (15.102)

1f the channel radius is taken as the determining dimension, However,
if the diameter 2R 1is taken as the determining dimension, as is done
in engineering computations, the "engineering" value of the_criterion
will be ' | .

GrPr = 3.2x10° (15.103)
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This number is close in value to that which corresponds to the break in
the curves of the heat transfer through liquid films (fig. 25, curve

ITII). This fact justifies the application on only two terms of the
series, which thus evidently actually converge rapidly. Hence, it is
necessary to assume that the accuracy assured by the second approximation

within the range O < &% £ 103 1is very high. i

For comparison with experiment, figure 50 shows the isolines of
equal gradient computed by the preceding formulas. Qualitetively, these T
isolines corxrespond satisfactorily to the photographically obtained
lines shown in figure 45A. However, fuller correspondence is obtained
wilth figure 45B. This photograph shows the isolines which are observed
in the same optical model if the heater and cooler are not placed to the
right or to the left, as corresponds to figure 45A, but are placed at an
angle of 45° to the vertical, as indicated on figure 45B. The reason
for the better correspondence may be seen from the following considera-
tions. Because of the limited linesr dimensions of the model (which are
only three times greater than the cavity dimension) under the conditions
of figure 45A, the vertical temperature gradient (hotter upward) is not
proportionally large by comparison with the theoretical case of infinite
surrounding mass. Under the conditions of figure 45B this vertical gra-
dient is somewhat concealed by the oblique displacement of the heater
and of the cooler. Hence, the actual conditions approach those which
correspond to the theory (horizontal gradient in an infinite surrounding

mass). -

The deviation of the theory from experiment must further be ascribed
to the random value of the parameter £4 and to the random ratio of the
heat conductivities assumed in the computation (X/le = 0.0083).

The further working of this example also gives the hope of investi-
gating the convection in an inclined channel, perpendicular to the hori-
zontal component of the temperature gradient. The results of the com-
putations must be compared with the results corresponding to the same
effective direction of the gradient, the same ratio of heat conductiv-
ities, and the same value of the parameter 54 a8 thoge assumed in the
computations. : e

7. Convection in Spherical Cavity’?

In an infinite so0lid medium with coefficient of heat conductivity
Ag; let there be a spherical cavity of radius R filled with an incom-
pressible (but thermally deformable) fluid with heat conductivity A,
heat cgpacity c¢, and coefficient of dynemic viscosity M, all independent

14The present section is compiled from data obtained by E. Drakhlin.
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of the temperature. Let the temperature gradiént A of the medlum at
infinity be given as constant in space and time. We shall find the tem-
perature distribution in the fluid  6(x,y,z) and in the sdlid medium
6e(x,y,2), and the velocity distribution in the fluid v(x,y,z). The
origin of the Cartesian coordinetes Xx,y,z will be taken at the center
of the sphere. ’

We introduce the following notations. Let 6y be tﬁe volumetric

mean value of the temperature; Pg = po(eo) the fluid density in equilib-
rium, p = p'-py; Do = po(6g) the pressure in equilibrium, p' = p-pg; let

p' << Po- We shall restrict ourselves to the first approgimation for
the temperature and the second approximation for the velocity:

0" =8 - 6= 6'(0) 4+ g1(3) )

0l =0, - 6, = 9é(o) + eé(l)
X=z“)+ﬂ@ ? (15.104)
+(0) = o

/

In the zeroth approximation the fluid is assumed to be stationary.

The boundary conditions have the following form:
v(R) = 0

8(R) = 0c(R) (15.105)

x(gg)r=3 B Xe(§§$)r=3

where r denotes the radius vectbr, r2 = x2 + yz + z2. Considering the
conditions of symmetry, we assume that the streamlines lie in planes
parallel to the plane determined by the directions g and A. We.
choose this plane as the xy-plane. and the direction of g as the direc-
tion of the y-axis.

We introduce the stream function ¥:
oy
Vx—-_-si
oY
Vy o= - S (15.1086)

- 182%
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Eliminating the pressure (eq. (15.75)), we obtain the following equations:
X . - —
® 1|3v/ ¥y Fy ar Py 631' g8 _ 9!
NAY = -3 ——'x‘a— 15.107
v I:B; (szay ay3 Bxay 8x3 v X ( )._

M = vy %}9{+ Vy x%e;'— (15.108)

where the symbol A¥ denotes the Laplacian in the coordinetes x and
y: ) . ..

In the zeroth spproximation for the stetionary fluid,
261(0) = o (15.109)

We solve this equation with the corresponding equation of the external
problem

20:(% 2 o (15.10)

and with account taken of the boundary conditions (eq. (15.105)). We
obtain the result from the theory of the potential (potentlal of a dl—
electric sphere in a homogeneous field)

X R .
e:(0) _ m{‘[Axx + Ayy] | (15.111)

(0) _ Ae - A
6 mf‘ ;g + 1] x[Ax + Agyl (15.112)

where Ay and Ay denote the corresponding components of the tempera-
ture gradient vector at infinity A. Tt s T

In the first approximation, equations (15.107) and (15 108) give

() o %7 x-——ségz (15 113)
x06' (1) o (1) « é%ii) ;.vb(,l) x aeTZ(O)_ (15.114)

It is necessary here to mske a small mathematical digression. Bup-
pose we have the equation A¥A¥ = Q, where ¥(x,¥,z) is an unknown
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function end Q 1is a known polynomial of degree N relative to x,y,z,
end let it be required to find ~O¥/dx and OJ¥/dy for the boundary
conditions .

oy _ (¢ _
(EE)r__R (&)r:R =0 - (15.115)
We set
(n) ,(n) 2
Yx = = %Y > ol y3T 4 [(%) " 1] (15.116) 8
=0 ]
g . (n) (n) (n)
vy = %: - ;% bnxlz Jz ko [(%)Zm ) l] (15.117)

where i(n) ign), j{n), j(n) k<n) k<n), and m are natural numbers,

running indepentdently of each other through the wvalues O, I, 2y « « o

eand N+3. The number s is determined by the condition that on the

right sides of equations (15.116) and (15.117) all the components of the
preceding form, for which the sum of the powers of x,y,z, and r con-

stitutes & series of natural numbers between the limits 2 dhd N+3, must

be present. It may be shown that the expressions (15.116) and (15.117) 3
solve the proposed problem, if the coefficients gy, and b, are found.

For this purpose it is first necessary to use the equation A¥AY = Q

and, secondly, the mixed derivatives of ¥ expressed in terms of 8y i
with the aid of equation (15. 116) and in terms of by w1th the aid of

equation (15.117) must agree. :

Applying the previously described mathemetical device, we solve
equation (15.113), and find the components of the velocity (eq. (15. 106))
to the first approximation. The computations give - -

(1) _ 3 8RR YW 2 2 g o :

Vx =% X T2 *RE T+ er(R - x° - y% - 2) ~ (15.118)
(1) 5 BBARY e ;2 2 o 2

Vy =gy X X ST X T (BT - x" -y -z 15.119
y 20 z RN+ er( -7 ) (15.119)

It may be verified that in this approximation the_streamlineg are - -
circles, parallel to the xy-plane. -

To find the temperature distribution in the first approiimation,
we solve equation (15.114) with the corresponding eguation (15.110) of
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the external problem for the boundasry conditions of equation (1s5. 105)
As a result, we obtain
o' (1) - ay(z%x + x5 + y4x + 222x3 + 222xy2 + 2x3y2) +
az(zzx + X + xy@) + azx +
ay(z%y + x%y + y° + 222x2y + 222y3 + 2x2y3) +
a5(z8y + x2y + y3) + acy
(15.120)
where
e \2 )
- e
1= 560 v N+ 2hg) xfy
2
— g gBR2 Ae
8.2 = - 200 X VR X (X m” 2)\6 AXA}'
2
oo 8 gprE:  (I7Th + 182 )Ng An
5 = 2800 © Tx O+ 22 )3 XY L
e
o N 2 (15.121)
= - — 8 (__"C 2
84 = - Tgo X A + 2A Ay
2 e \2
= 9 gBR e 2
85 = 200 X Twx "(x+zx> Ay
S g (A7h + 18N8
8g = -~ Saems X oo X .
6 2800 7 wx (A + Zke)s Ay )
4 2
gBA R AN Ayx - Ay
9'(1) — 2 X Ax X Y X = 7 X ; A:X (15 122)
e’ = 350 N (h + 2hg) .
The finding of the temperatures and velocities in the second _&pprox-

imation requires

very lsborious computations. The velocity components

in the second approximation are polynomials of the seventh degree in the
coordinates x,y,z. To obtain the coefficients in these polynomials it

was necessary to

solve a system of 44 linear algebraic equations.
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have the following form:

2y2 2 2 2
Pgx2y2 + p,22 + pgxZ + poyE + py) x

1
2 2 2 _ ‘2 4 4 4
(% + y° + = 1)x + EE(qlz + QXY + gyt +

NACA TM 1407

The final expressions for the velocities In the secoﬁé approximations

13 .
véz) = EI(P124 + poxt + pzyt + pyzlx2 + pgzlyZ +

Qu22x2 + qgzl2y2 + qgx2y2 + q722 + qgx? + j

agy? + ai0) (x% + ¥y% + 2% - 1)y

(2) ——(rlz.4 + rox?t + rzy® + ryz2x2 + rgz2y2 +
6x2yz + r7zz + r8x + rgyz + 1) %
l .
l .
(x2 + y2 + 22 - 1)x + —k—l-(slz4 +-8,x% + s2y% +

B4Z2x2 + 85Z2y2 + sszzyz + S7Z2 + Sexz +

szz + 810) (%2 + y2 + 22 - 1)y

where there has been set

R=1
kg = 2% x 3% x 5 x 7 x 11 x 13 = 8,648,640

3 x 4 x5 x 7x 13 X 4919
AN
1 = (gBAyR ve
v R8x A+ Zx
. gBAyR Ae éz
27520 A+ zxe A

It

w
[aV]
0

£6,857,740 .

M -

182%

> (15.123)

. (15.124)

~
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and Dy, Q35 Ty, and s; (L= 1,2,. . .,10) represent constant numbers

whose valueg are given in table IX. The values of -qlb and riy are
given by _

179,390 17\ + 18%e

WO = T3 " ZBOO(N + 2ny) ‘2
(15.125
o _ 257,439 , 178 + 18\ . )
10 8 2800(X + 2\.) 2

As an illustration of these very complicated results let us con-
sider as an exemple the case of heating from the side (Ay = 0), where
for simplicity of computation we put (see eq. (15.121))

GrPr = 560
(15.128)
A= X

From equation (15.121) we obtain

\

ay = ag =0

83 = -8y = Ay
(15.127)

The further computations show that in this case the distribution of
the velocities (isolines of the velocities) in any plane passing through
the z-sxis (meridionsel plene) very strongly recalls the situation con-
sidered previously (fig. 6). The maximal value of the tangential veloc-~
ity component is found to be at approximately 0.6 of the sphere radius,
and is approximetely equal to 10.6 x/R for a value of GrPr of 560.
However, in the second approximation the stresmlines are not obteined as
circles but have an oval shape extended in the direction of the axis
v = x, and are compressed in the direction of the axis y = -x. On the
axes x &and y the maximal value of the radial component is obtained
for the assumed value GrPr = 560 on half the sphere radius, and is
equal to +1.4 %/R. ' o

The convective process in the cavity produces, in the surrounding
mass (within the limits of the first approximation), both the horizontal
temperature gradient acting from without and the vertical gradient (egq
(15.122)): .

o1 o _ 8 afR* A yROAZ

- x 15.128
350 v N ¥ ang)? 3 ( )
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A epherical cavity resembles a vertical thermal dipole whose in-
tensity is proportional to the square of the external gradient A, and
to the seventh power of the radius of the sphere R. This expresses the
gravitational-thermal effect of convection (formula (15.98)).

If followed in detail, it mey be established that the entire course
of the computations previously given represents a nonexplicitly carried
out method of successive approximations based on the expansion of the
solutions in powers of the Grashof number:

4
or = %’l (15.129)

This fact appears in the structure of formulas (15.118) and (15.124).

The preceding example shows that the practical computation neces-
sarily leads to such a series. Therefore, 1t is very convenlent to give
this series in expllicit form at the very start of the computations,
taking Gr as the smsell parameter of nonlinearity.

82%
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CHAPTER 16

EXPERTMENTAT. ITNVESTIGATION OF THERMAT. CONVECTICN

IN CAVITIES COF SFECIAL FCRM

1. Statement of Problem

A good discussion of the thermal convective phenomens in an infinite
horizontal slit between two solid planes is found in the literature (the
cells of Bénard, ref. 1, ch. 12). The main purpose of the present book
is to investigate the opposite case, thermal convection in a vertical
channel. It is natural to connect these extreme cases with the inter-
mediste cases not only theoretically (ch. 15, secs. 6 and 7) but also
experimentally, namely, the thermal convection in s hollow sphere and in
a horizontal channel of circular section. a

Both the previously discussed cases have great practical signifi-
cance. First, such cavities are often comtained in the composition of
many heat Iinsulating materials, either accidentally or by design. If
convection arises in the liquid or in the gas f£illing these cavities,
the effective heat conductivity of such insulating impregnation may be
found to be much greater than that found from the magnitude of the molec-
ulaxr heat conductivity of the liguid or gas. Although the effective heat
conductivity of the air inclusions is determined in structural practice
the question must not be considered as exhaustively solved, and it 1s
necessary to determine more accurately the part played by convection in
this problem.

Secondly, the convective heat transfer in such cavities possesses a
characteristic feature that requires detailed study; namely, that convec-
tion is characterized by the rising of the warm fluid particles while the
cold particles descend. Hence, as a result of convection an additional
vertical temperature gradient necessarily arises; that is, the fluid is
warmer toward the top (formulas (15.98) and (15.128)). This additional
convective gradient distorts the initial thermal field inm the salid sur-
rounding mess that contaeins the cavities. A specific gravitational-
thermal effect arises (recalling the well-known galvaeno-magretic Hall
effect). The passage of the heat flow through the porous body in a
horizontal direction is accompanied by additional heat of its upper part
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and additional cooling of its lower part. The heat-flow vector ceases to
be collinear with the temperature-gradient vector, a vertical deviation
arising between them. Hence, the concept “effective thermal conductivity
of a porous mass" loses its sense as & scalar and acquires that of a
tensor whose components are connected with the gravity acceleration
vector.

This circumstance 1s generally ignored in practice although its cor-
rect acknowledgment masy result in the saving of meny megacalorles of heat -
for the country. In the following paragraphs only initial experimental
studies, which have been conducted in this direction, are described.

182%

2. Convection in Spherical Cavityl5

A divided model was constructed fram a plece of Plexiglas of dimen- -
sions 47 by 47 by 62 millimeters, shown In sectlon 1n figure 51. Both
halves of the model were placed with their ground faces against each
other and were hermetically compresged. Channels of asbout l-millimeter
diemeter were drilled in the interior of the model. The double-insulated
wilres of thermocouples of copper-constanten of approximstely 0.2~
millimeter diesmeter were inserted in these channels in a menner such
that the theroccouple Junctions were located sbout 1 millimeter inside
the spherical cavity. The channels with the thermocouple wires were
closed with wax. The cavity was filled with distilled wabter through the
channel X, of diameter of about 3 millimeters. The model was placed in
the heater coil =z and was covered with cooler X (a brass vessel con-
taining ice and water).

In correspondence with the scheme of figure 52, 18 thermcouple
Junctions were arranged along the inside surface of the sphere. Their
coordinates, expressed in geographical langusge, are given in table X,
Further, thermocouples were located at the points A and B, immediately
on the heater under the cooler.

The results of the meagurements are presented in table XI and in
the composite figure 53 corresponding to the eight different heating
power inputs. On each individual graph of this chart the temperature
is glven as a function of the "longitude" of the corresponding thermo-
couple. The lines correspond to the same "latitude": line 1 corres-
ponds to the upper pole, line 18 corresponds to the lower pole, the
center line to the equator, and so forth. The lines A and B correspond
to the temperstures of the upper and lower faces of the model, respec-
tively. An analogous tempersture distribution was also obtained by
another method of measuring the temperature (an electrical method, see
ch. 19, sec. 1).

1515 section has been compiled from date obteined by N. A. Pleshkov.
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The composite figure shows that the mean temperature of the equator
is not equal to the mean of the temperatures of the poles. The temper-

perature, and is below the meen when it is above the room temperature.

The temperature of the equator is higher than the average of the
polar temperatures when the fluld in convective motion rises at the walls
and descends slong the vertical axis of the model. This phenomenon is
favored by the low mean temperature of the entire model as compared with
the room temperature; the model heing heated not only by the heater but
also through the side walls of the room. When the mean tempersture of
the model is higher than the room temperasture the reverse phenomenon is
obtained.

The composite figure also shows that on the mean temperature of each
cirele of latitude there are superposed waves, predominantly with a pericd
of one rotation sbout the vertical dismeter of the sphere (for large heat-
ing powers a half rotation)}. It is possible that these waves also arise
as a result of the effect of the surrounding circumstances (windows, heat-
ing apparatus), since the tests were conducted in the winter and the mode
was not heat-insulated. .

From these considerations the folliowing preliminary conclusions may
be drawn: T

(a) Thermal convection in these tests took place and transferred
further quantities of heat upward, in addition to the heat transferred
by the molecular conductivity. Thus, the effective thermal conductivity
of the fluld medium was greater than the molecular thermal conductivity
of the fluid medium. i '

(b) The form of the convective flow was greatly subject to extranecus

temperature effects, which must very carefully be eliminsted in adjusting
the more accurate measurements. '

A noted example of thermal convection in a spherical cavity of large
dimensions (aerostat heated by the sun) was investigated by E. V.
Kudryavtsev (ref. 1).

3. Convection in Cylindrical Cavity with Horizomtal Axis

Figures 44 and 45 show photographs of certain cases obtained on a
model similar to that of figure 47. A sketch of the model is shown in
figure 54. A rectangular block of a lead alloy of smell heat conductiv-
ity (babbitt) was clamped through asbestos strips, between two Textolite
disks. A cylindrical opening, stopped by two positive optical lenses )
was drilled in the block. The obtained cavity made contact with the
outer space by a through channel, by which the cavity was filled with
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glycerine. The channel was then covered with stoppers on both sides.
Tubular channels were drilled along the opposite sides of the block. The
porcelain tubes of an electric heater coll and the connecting piece of
the water cooling pipes, respectively, were inserted into the channels.
The Nichrome spiral of the heater wag inserted inside the opening of the
porcelsin tube. With the aid of the combination of the electric heater
and the water cooler it was possible to produce the conditions of en
approximately homogeneous thermal field perpendicular to the horizontal
axls of the model in the block.

By mounting the model on the two horizontsl bars of an optical bench
it was possible to assign the temperature gradient in the block any ori-
entation relative to the vertical (the heater was placed below, on the
side, or sbove, at any angle). The angles were réad by means of a small
plumb line, sliding in front of the gradusted cirele attached to the
Textolite disk.

The observations of the convective phenomena in this model both by
means of suspended light-scattering particles, and by means of the opti-
cal lattice method, showed that two types of motion are typical; namely,
circular and vertical-diametral. '

The circular motion is obtained with the heater and cooler placed at
the two sides of the model cavity. In this motion the fluid rises along
the warm wall and descends along the cool wall. In this way the stream-
lines resemble almost true circles.

The vertical-diametral motion is cobtained with the heater coil
placed below and the cooler above.' In this motlon the fiuild rises in
the vertical-dismetral plane and descends at the-sides along the cylin-
drical walls. However, the reverse phencmenon is also possible. (See
discussion of results in the preceding section.)

Both these types of motion are sufficiently stable and for the in-
clined positions of the model mey evidently exist together. With any of
these motions the presence of considerable vertical temperature gradients
is clearly noted. It is thus clearly seen that the part played by the
fluid in the cavity of the model is equivalent to the part played by a
vertical thermal dipole, or more accurately, by a continuous chain of
such dipoles placed along the horizontal axis of the model.

4. Concluding Remarks

The previously described preliminary experiments and thelr results
do not as yet give a complete answer to the question discussed at the
beginning of the chapter. Their main significence lies in the fact that
they outline the whole experimentel difficulty of the problems. In

182%



NACA TM 1407 165

particular, combined methods must be employed. For example, the optical .
method of observation must be combined with the method of temperature
recording, end so forth. It is likewise necessary to very carefully ex-
clude external influences that are unaccounted for, to take noneliminable
effects into account, and so forth. A development of suitable sppliances
and equipment for the tests is thus required. :
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CHAPTER 17

THERMAL CONVECTION IN INCLINED MODEL OF

CTIRCULAR CROSS SECTTONLC

1. Description of Experimental. Setup

For the experimental Investigation of thermsl convection in a closed
circular model heated at one end and inclined at various angles to the

vertical, models of the same type as those described in chepter 9 (sec.
1) were used.

At its center the model wasg attached to the horizontal axis of a
special stand; and, with the aid of a clock mechanism, it rotated approx-
imstely once each day. In this menner the axis of the channel very
smoothly assumed verious aengles with the vertical, starting from zero
(heater on bottom) through = (heater on top) up to 2n (heater again on
bottom). The temperatures were read by means of automatic devices as
described in chapter 9, section 3. The usual apparatus was used as a
photographic recording device, the recordings of which have been pre-
sented previously in various sections (Cartesian recording).

2. Laminar Regime .

An extract from the photographic record (fig. ¥XI) may serve as an
example. The recording was conducted for five deys, with no essential
differences cbserved in the recording of some days from that of others.
The temperature of the aluminum jacket of the model was taken as the zero
temperature. The five averaging thermocouples nearest to the heater coil
were arranged 1 centimeter from each other, and the remsining ones 3 cen-

timeters from easch other.

When the heater was located at the top, the temperature along the
model varied according to the exponential law, the temperatures of the
parts nearer the heater (upper curves) being considersbly higher than the
others. The temperatures of the parts some distance from the heater
were almost equal to the temperature of the Jacket. The instant when
the model occupiled & strictly vertical position with the heater on top

lsThis chapter was compiled from data obtained by V. A. Tetuyev.

TRZY
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was distinguished by a nabtural sign; the air enclosed in the pert of the
cold reservoir at the end of the model opposite to the heater entered
the channel of the model in a floating bubble and partislly displaced
the water there. When this occurred the temperature of all the thermo-
couples rose with a sharp jump. The greater the temperasture gradient at
the locatlion of the given thermocouple, the greater waes the magnitude of
the jump. The reverse floating of the air bubble from the imterior of
the model occurred at the instant when the channel of the model occupied
a horizontal position. The corresponding instant was marked on the
photo record by a small reverse Jjump, bthe cooler f£fluid moving toward the
hester.

When the heater is placed below, leminasr convection takes place in
the model. The column of fluid has a greater effective thermal conduc-
tivity; the curves are situated at almost equal distances from each other,
the temperature gradient along the column being the ssme. This gradilent
depends on the angle between the axis of the channel and the vertical;
in general, the smaller this sngle the smaller the gradient. However,
at the instant of strictly vertical position of the tube the temperature
gradient in the region near the heater possesses & singular, sharp mex-
dmum. This maximum becomes inapprecisble only at a distance from the
heater spproximately equal to 17 chennel diasmeters.

The photo recording apparatus was later perfected. An aluminum disk
was attached on the same horizontal axis gbout which the model rotated.
Pieces of two-sided (nonwarping) photo films were attached to this disk
by simple elips. The galvancmeter was arranged in such manner that its
point moved along the horizontal radius of the disk. In this msnner the
photo records were obtained in the form of polar dlagrams on which the °
angles were equal to the angles between the axis of the chamnel and the
vertical. N

The following figures show examples of the photo records obtained
with this apparatus. Figure XXII corresponds to a somevwhat larger heat-
ing power than figure XXIITI. These polar records permit the same inter-
pretation as the Cartesian records of figure XXI.

The small air bubble of these records was carefully removed and the
heat expansion of the water was sbsorbed by an elastic compensator (a
piece of rubber tube with a Mohr pinch cock). The zero point on the
photo records was taken as the tempersture of the hottest thermocouple.
The peripheral curve refers to the temperature of the aluminum jacket of
the model. Figure XXIII notes the end of the nonstationsry process
marked by the starting of the model in motion from the position of "heater
above." Figure XXIV shows a double print of the two last photographs.
Both photogrephs coincide with each other in the convective part.
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3. Generalization of Experimental_Resulté_

The attempts to evaluate the obtained curves led to the following
conclusion. In general, in each position of the model the temperature
distribution along the model corresponds to figure 28; the linear law of
temperature distribution coincides (without jump or breask) with the ex-
ponential law. The first is characteristic for convective regimes and
for the parts of the model nearest to the heater. The second 1s cherac-
teristic for the molecular heat conduction end is observed in the verti-
cal model far from the heater. The observed small deviations of the
records from symmetry and from the coincidence mentioned are readily ex-
Pplained by the unsteady regimes. The velocity of rotation mey be reduced,
and the records will then be more symmetrical and the coincldence with
the previously mentioned schemastic filgures will increase.

However, in this gemeral coincldence there are also essential devi-
ations. In the first place, the characteristic convective graedient de-
pends on the angle as an even function (increases with increasing angle).
Secondly, the exponent likewise depends on the angle as though the thermal
conductivity of the fluid changed with increase of the angle and assumed
an extreme (molecular) value for an sngle equal to = (heater on top).

The preliminary interpretation of the first of these facts leads to
the following consideratioms. If in the "fundamental" equations of
chapter 3 it is assumed that the force of gravity acts along the vertilcal
of the model, then it is natural to assume that for the inclined model
only the axial component of the gravitational force will act upon the
model. Hence in formule (3.7) it is necessary only to replace the mag-
nitude g by g cos a; that is, to retain cos « in formuls (3.1). The
comparison of this hypothesis with the results of the measurements on the
photographs showed that this hypothesis is satisfactorily Jjustified with-
in the interval of almost from zero to angle of 45° with the vertical.
Near zero the agreement is disturbed by the previously mentioned small
sharp meximum. For angles greater than 45° it appears that the gravita-
tional acceleration is to be multiplied not by cos o but by a larger
megnitude that 1s nearer unity than cos «. The comparison of this fact
with the material presented in chepter 11 lesds to the preliminary com-
clusion that the higher the heat insulation of the model the wider the
applicability of the "cosine law."

In fact, the heat losses of the convective flow in the thermal con-
ductivity of the walls require the disruption of the antisymmetry of the
flow and in the former plane of antisymmetry also require the origination
of an sdditional ascending flow along the axis, and of a descending flow
at the wall (see ch. 16, sec. 2). It must be assumed that in an inclined
model the projections of the streamlines and the provisional "surface of
antisymmetry" take the form represented in figure 55. In this way the
velocity component normal to the axis of the model gives so considerable

TO?%
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a value that the linear treatment does not lead to a sstisfactory des-
cription of the actual state of affairs.

A preliminary interxrpretation of the second of the dbovementioned
facts (i.e. , the change of the epparent molecular thermal conductivity
in an inclined model)} is as yet difficult to give. Particularly strange
is the fact thet the spparent conductivity of the almost horizontal model,
when it must be assumed that there is comvection in it, is less than in
the vertical model with "heater sbove," when convection can hardly occuxr
in it. This fact is reflected in the last figures, in that they have a
greaber extension in width than in height, the temperature of the hottest
thermoéouple relative to the Jacket being higher for the slmost horizon-
tal than for the vertical model for the same heating power input.

4. Above-Critical Regime

At an increased heating power for the almost vertical model _(near
zero angle of inclination, heater below) the sbove-critical regime of the
heat convection occurs. In figure XXVA and B are shown the polar photo-
graphs corresponding to a considerable heating power of =0.80 calorie pexr
second and to a large sensitivity of the galvenocmeter (1° ¢ corresponding
to 6.25 mm). The zZero point is taken as the temperature of the upper
averaging thermocouple, the farthest removed from the heater, represented
on the photogrephs by a true arc of a clrcle. The relative temperature
of the Jjacket is recorded below this arc. The photographs show how the
regime of the convection, maintained laminar by the inclination of the
model at large angles of inclination, is sharply changed into the above-
critical regime for smell sngles. The smooth equidistent curves are
sharply replaeced by diffuse bands that reflect both the lowering of the
effective thermsl conductivity of the fluid and the instability of the
process.

On figure XXVIA and B are shown the polar photo records correspond-
ing to a large heabting power and to so small & galvanometer sensitivity
(1° ¢ corresponding to 0.66 mm) that the four curves of the preceding
record in the laminar regime almost indistinguishably coalesce into one.
This coalescence is aided by the increase in The convection parameter of
water gﬁ/\m due to the increased meen temperature of the fluid in the
model for this raised power (see ch. 8). On the last photograph below
the zero line (the arc of the circle) the temperature of the aluminum
Jacket of the model is again recorded; and still further below, the tem-
perature of the Dewar flask, the datum mark of the temperature. The in-
creased hesting power led to increased difficulty of leminarization in a
wider angle than before (34° to 35° of arc on fig. XXVIA and B as com-
pared with 13° to 14° on fig. XXVA and B). On figure XXVII, because of
the increased sensitivity, it is possible to distinguish the detailed
character of the instability at the above-critical regime.
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From a comparison of the last photographs the following question
mey be asked: Is not the small sharp maximum near the zero angle on fig-
ure XXI an indication of the incipient above-critical regime that clearly
develops at large powers; is a laminar regime in general possible with a
strictly vertical model and camplete absence of external cross tempera-
ture gradients? In this comnection it is useful to emphasize that the
tests described in this chapter were conducted in a room with tempere-
ture under good thermostatic control.

1827
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CHAPTER 18

CONCLUSTON

The materisl presented in this report must in no seunse be considered
as exhausting the problem of gravitational convection under the conditions
of the internsl problem. On the contrary, the inexhaustibility of any
branch of science is again emphasized. However, this materisl msy serve
as & guide for further research in the fields which immediately relate to
industrial problems as well as to problems of physico-mathemstical
investigation.

An orientating list of those preliminary questions which are directly
suggested by the material presented in this report and the further study
of which should develop into well-Tounded technico-sclentific investiga-~
tions is as follows:

1. Investigate from the materisl in the literature how the 1deas of
Lomocnosov on convectlon have been worked out by Russian and Soviet
scientists.

2. Consider and theoretically rework the foundations for the setting
up of the equations of grsvitational convection with a view toward render-
ing them more accurate and extending the range of their applicability.

3. Extend the results of this work to convection of a nongravita-
tional (electrostatic, magnetic, or other) nature.

4. Investigate the "external problem” of gravitational ccnvection
as a particular case of the "intermal problem."

5. Extend the investigation to different fluids and work ocut & meas-
uring procedure of the comvection parameter gB/vx as a chemico-analytic
index for fluids.

6. Investigate convection in gases for the same apalytical purposes.

7. Investigate the convective phenomens of the preceding type in
miltiple phase systems with stratification near the temperature of mutual
solution, and make use of the turbidity of the fluid comnected with the
formation of an sutonomous phase as a "thermoscopic” factor.
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8. Clarify the question as to the setting in of the critical regime
of gases as sharply as of liquids, and investigate its characteristlc
properties.

9. Investigate the phenomensa in models of noncircular_;éétion.
10. Investigate the phencmens in models of variable section.

11. Carefully investigate water and other important iﬁdustrial
fluids, considering the values of the convection parameter, and issue
tabulated results. '

12. Campile and publish tables of various cylindrical functions of
the argument (—\/ix) for use in engineering computations of those cases
of convection where the tempersture sbove is higher than the tempersture
below (ch. 5, sec. 5).

13. Investigate the work of éxhaust apparatus and flues with natural
and forced circulation, considering the super-position of free and forced
convection (ch. 5, sec. 4).

14. Extend teble 1 to the case where the temperature above is higher.

15. Clarify the question of the heat conductivity of a fluid in end
phenomena..

16. Give a greater quantitative clarification of the seﬁiempirical
relation (ch. 11) regarding the velocity of spproach flow.

17. Investigate the "natural" thermal fluctuations in unsteady re-
gimes applying to industrial needs.

18. Investigate the diffusion-(concentration) and thermodiffusive
convectlon analogous to the thermal convection 1nvestigated in this
report.

18. Investigate on models the convection procéss in thejzboling of
castings (both its hydrodynemic and thermal aspects).

20. Experimentally render moré accurate the velue of the Nusselt
nurber and explain how, and on what parameters, it depends.

2l. Anslytically investigate the nonlinear above-critical case.

22, Experimentally investigate convection in a spherical cavity
for a horizontal tempersture gradient. -

. T82%
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23. Supplement the theory of convection in a horizontal tube with
the case of heating from below.

24. Experimentally investigate, in an exhaustive manner, the problem
of convection in a circular horizontal channel (from the theory of ch.
15, sec. 6).

25. Investigate the problem of convection in an inclined channel for
any orientation of the tempersasture gradient.

26. Investigate the process of the transition or the coexistence of
convection with axial symmetry and dismetrel antisymmetry, for heat losses
at the wall.

27. Investigate convection in a cylindricsal cavity in regard to the
persmetrical nonlinearity (for narrow capillaries, as, e.g., the pores
of boiler scale).

28. Imvestigate the effect of the fluld-column length on the degree
of stability of the convective motion in the column (figs. XVII and
XVIII).

29. Investigate the problem of the gravitatlonsl-thermal effect, and
construct the tensor of the effective thermal conductivity of porous ma-
terials on the basis of the considerations of chapters 5 (table 1), 15,
and 16.

30. Investigete the gravitational-thermal and gravitational-
concentration detector effect; that is, the occurrence of vertical gra-
dients of temperature or cancentration in zomes containing liquids or
gases for periodic changes of temperature or concentration.
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CHAPTER 19 -

SUPPLEMENTARY TOPICS

1. Electrolytical Method of MEasurinngémperatu£;sl7

Reference 1 shows that the difference of potentials.E, observed be-
tween two like metallic electrodes immersed in & solution of a salt of
the same metal, is expressed by the formula -

E =2 (T In Ky - T, 1nKgp) (19.1)

where Kbl’ and sz denote, respectively, the. constant of equilibriﬁm
at the absolute temperatures T; and T,, Z the valence of the metal

ions, and R the gas constant. The expression ' R/F constitutes 198.4
microvolts per 1° C. : -

It mey be expected that the expression in parentheseé-will, in a
small temperature interval T; to T,, be proportional to this interval

E = A(T; - Tp) _ _ (19.2)

The value of the factor A was determined experimentally for copper
electrodes and for solutions of copper sulphate in water. —

The electrcomotive force was measured between two pieces of enameled
electrotechnical copper wire of 0.41-millimeter diameter by means of a
Raps compensator. The bared ends of the wire were wound on the bulbs of
two thermometers which were placed in the copper sulphate solution.

A saturated solution was used for the first test. The chemically
pure solution of copper sulphate in distilled water was placed in two
small beekers which were comnected by a siphon capillary. The copper
sulphate crystals were in small excess in both beakers. One of the
beakers was heated by a heater coil of high-resistance enamgel wire that
was wound on the glass of the lower part of the beaker. The other beaker

' mis section was compiled from data obtained by N. A. Pleshkov.
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was at room temperature. The bulbs of the thermometers were immersed in
the beakers, and served simultanecusly as asgitators. The electrodes were
held short-circuited throughout and were connected in the compensator only
for the short intervals of measurement. In the temperature interval of
10° ¢ (eight readings), the coefficient A in equation (19.2) was constant
and was equal to 100 microvolts per degree.

In the other test, which included 34 resdings in the interval of
300 C, the electrodes were either short-circuited or were discomnected
for considerable intervals. With open electrodes the coefficient A was
obtained equal to 62 microvolts per degree; for closed electrodes the
coefficient maintained its previous value of 100 microvolts per degree.’
Since the closing and opening of the electrodes was effected in the course
of the messurement process, the coefficient A was now defined as

oE

A, = 5
1 Tl,

T, = constant (19.3)

The same experiment for open electrodes, repeated for a 20-percent
solution of chemically pure copper sulphate gave the value A, = 65.7

microvolts per degree in the intervel of 21.5° C for 25 readings. The

test, which was conducted very slowly, showed that the figures obtained
on raising the temperabure agreed well with the figures cbtained on low-
ering the temperature. At the same time it was revealed that an appre-
cisble electromotive forces (110 microvolts), arising from the noniden-
tical chemical composition of the electrodes, also existed for T = Tp.

In a 15-percent solution of industrial copper sulphate in distilied
water, with open electrodes in an interval of 45° C with 13 readings up-
ward and 6 reading downward and with exposure at a higher tempersture,
it was found that Ay = 61 microvolts per degree. This test also showed

that the values of Al agreed well with each other in the upward and

downward reading. However, while the temperature was held at the higher
value a change of the initial electramotive force occurred, from 120 to
240 microvolts.

The tests conducted with the saturated solution of the industrial
strongly contaminated copper sulphste, dissolved in piped water in the
interva.l of 26° C (16 points upward and 18 downward), gave the value

= 74 microvolts per degree and also revealed a displacement of the
initial electramotive force when held at the maximm temperature.

The internal resistance of the investigated compounds was rather
large (of the order of 30,000 ohms). Hence, to replace the compensated
measurements of the electromotive force of such a "thermoelectrolytic
element" by measurements of the current was not advisable. In fact, for
the usual (small resistance) galvanometers, these will be measurements
of the "short-cirecuit current.” The strength of the current is determined
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not only by the electromotive force of the element but also by its in-
ternal resistance (including here the polarization effects) The test
confirmed that the dependence of the galvancmeter readings connected
directly to the element on the temperature difference is nonlinear: On
increasing the temperature of one of the electrodes the resistance of:
the compound decreases, and the gslvanometer readings increase
nonproportionally. '

To verify the suitability of this device for measurements under con-
ditions of industrial practice, the following test was conducted. A
glass tube of 2.5-centimeter dismeter and of 45-centimeter length was
filled with sand contaminated with earth dust and was treated at room
temperature with a saturated solution of industrial coppe? sulphate in
piped water. At both ends the tube was stopped with corks, in which
thermometers were inserted. The thermometer bulbs were wound with the
bared ends of enameled electratechnical wire of 0.41-millimeter dismeter,
forming the electrodes. At one end the tube was wound with the high-
resistance enameled wire of an eleétrical heater. In the _interval of
the temperature differences up to 18° C (nine readings) the measurements
with the open circuilt electrodes gave the value A = 62 microvolts per

degree, and in the interval 22° to 40° (six readings) the measurements

with the closed circuit electrodes gave the value Ay = 80 microvolts per

degree. A considerable change in the initisl electromotive force was
noted during the assemblage and while the apparttus was held at high
temperabtures.

These date show that, by taking a number of precautions, the elec-
trolytic method mey be suitable for technical messurements of temper-
ature difference. The main defect of this method is the change in the
initial electromotive force in prolonged tests. . This charnge is connected
with diffusion processes. For water solutioms, the diffusion coefficient
is 100 times less than the temperature-conductivity coefficlent. Hence,
the balancing of the concentrations at the electrodes will proceed 100
times more slowly than the balancing of the temperatures, because the
diffusion can only pass through the fluid while the heat can also pass
through the wall. The consideration of this fact aids in perfectlng
the measurement procedure.

2. Problem of Geothermsal Gradient

Geologists frequently insert thermameters in drilled wells in ordexr
to measure the tempersture of the layers of the earth's core. In doing
so they assume that, in the absence of liquids that enter from without,
the liquid in the well is at rest and at each depth has the temperature
of the surrounding stratigraphical lsyers. However, the temperature is
higher in the depth of the well than at the ground surface, and condi-
tions for convective heat trensfer may arise.

™Hev
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Most geologists are sceptical as to the possibility of thermal ¢on-
vection in drilled wells (ref. 2). However, the liquid in the well can
be at rest only at small temperature gradients. On attaeining a charac-
teristic gradient, the liquid is set in motion end will transfer a very
large quantity of heat upward. For a well of 12-inch diesmeter (30 cm)
filled with fresh water, the characteristic gradient will be 30%=106
less than in our first model (of sbout l-cm diem.). It is approximately
A = 10-7 degree per centimeter, which corresponds to a geothermasl gradient
of the order of 107 centimeters per degree = 10° meters per degree = 100
kilometers per degree.

In order to cbtain the mean world gecthermal gradient of 30 meters
per degree {i.e., the characteristic gradient A = 3. 3IXL0~4 deg/cm), it
is necessary to examine a well of gbout 4.2-centimeter diameter, filled
with fresh water.

The geothermal gradient for the characterlstic gradlent must be
determined by the formula

4 .
% = %x———(m)z : (19.4)

Chapter 8 gives the parsmeter gB/vx for fresh water and certain other
liquids (eq. (19.4)). The tube radius R must be expressed in centi-
meters; the characteristic number (kR)* has a value of about 100 (for
a more accurate value see fig. 4). o

If the heat source below is of sufficient power (i.e., if the thermal
conductivity of the hot layers st the bottom of the cavity is sufficiently
large), an sbove-critical regime of heat transfer arises. TIn this regime
the effective thermal f£luid conductivity is much higher then the moleculsar
(tabulated) fluid conductivity and may be evaluated approximately by the
formula (see ch. 10, secs. 3 and 4)

Aers

1500>-—-—= Nu > 960 (19.5)

The value of A that enters here for the tabulated thermal conductivity
of fresh water is, in technical dimensions, approximstely equal to 0.5
kilocalorie/(deg)(m)(br).

Geologists are familiar (ref. %) with the disturbances of the field
of the earth's core that are connected with the dissemination within the
true stratificetion of rocks of bodies of scme other (mining) varieties
of different form end composition. A drilled well is a body of this kind.
The effective thermsl conductivity of this body may be determined by the
preceding formulas. It is then possible to consider the distortion that
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it introduces in the temperature: of the surrounding layers, and the
errors that these measurements give.

3. Problems of Natural Ventilation

Suppose we have a chamber, separated from the surrounding air by a
thick horizontal wall, containing a cylindrical chamnel. The channel
length is large compared with the diameter; the edges are rounded. If
the tempersture below the channel is higher then above, the arrangement
will be favorsble for convection. We restrict ourselves for the present
to a single opening so that the quantity of outside air that enters the
chanmber is equsal to the quantity of air flowing out from the same channel
(conditions of diametral antisymmetry).

Favorable conditions of fEntilation obtain only for the laminsr re-
gime, when the horizontal components of the velocity of the air in the
channel asre not large. At the abpve-critical regime the mixing of the
air in the chamnel sharply impairs the conditions for ventilation. The
laminar regime arises only for a characteristic gradient and is observed
when the channel length 1, the channel radius R, and the difference in
temperature between the external air end that in the chamber 6'-8"
satisfy the condition -

At TRYY: ]
gﬂfﬁwg 6")R” | 200 ' ] (19.6)

which follows from formuls (5.15). This value of 200 corresponds to the
small thermal conductivity of the alr as compared with that of solid
bodies (fig. 4). For example, brick masonry has a conductivity 40 times
as large as air. Substituting the parameters of air for a temperature
of 20° C, we obtain approximately

L. 1t
Q—T—e— X Ré = 2 (19.7>

For example, for a wall thickness of 1/2 meter and an opening of ZR =
l0-centimeter diameter, the conditions of laminar convection arise for a

temperature difference

o' - 8"= —2-"-29 =0°, 16¢C i} (19.8)
5

The maximum possible quantity of heat transferred by the laminar
regime corresponds to the critical point, where it is equal to the above-
eritical quentity. For the critical point, we thus obtain approximately

Qep = Q.7\Nu1'g -:MR_Z 9—-;—9 N ¥ - (19.9)

T8a%
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For example, for air

*¥%
Qg ~ 6107 x % Nu¥* = 4x107% N‘;{ (19.10)
Setting Nu** = 10°, we obtain
a4
Qep = EL—-cal/sec (19.11)

The narrower thé channel, the larger the critical quantity of heat trans-
ferred. For example, for a channel opening of 2R = 10-centimeter diam-
eter, the quantity of hest transferred is negligible (about 0.02 cal/sec).

For shorter channels, most of this quantity of heat passes directly
with the air. The air paseing upward does not have sufficient time to

lose much heat in the downward counterflow of air through the secondary
moleculer thermal conductivity. Therefore, we can spproximately set

Up = pe(8' - e"_)v (18.12)

whence the volume velocity is determined as

Q .
V= p—c(gg——e-n—y (19.13)

For example, for air

0.4 . . 2X10°

= 3)(]_0-%2(9' _ 9") RZ(G' _ 9") ) (19.14;)

If we replace the temperature difference by the characteristic gradient,
we have '
2X10°

V= =7 R

2 w 3X10° S cm®/sec (19.15)

Thus, for the conditions of the existence of the characteristic
gradient, the volume of air exchanged is proportional to the ares of the
channel cross section §, and is inversely proportional to the chamnel
length 1 ("Ohm's law").

For the preceding exemple this gives - - -
V = 300 ecm®/sec . T T (1e.18)
If the channel is short of if its edges are sharp, the action of

the end effects may disturb the assumed laminar regime and impair the
conditions of wventilatiom.
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If the critical gradient is exceeded, the conditions favorsble for
ventilation are so sharply impaired that it is more convenient to divide
the channel into a number of chennels by constructing longitudinal ver-
tical partitions. In this way it is possible to adjust the opening of
the chamnel to the cheracteristic dimensions for each gradient. At the
same time the conditions of ventilation may become more favoreble becsuse
an independent flow of air is established in each small channel lobe.
Ventilation may then be realized without counterflow in & single channel.

4. Problem of Velocity of Evaporationl8 ”

Assume that in a dense homogeneous mass, filling the lower half-
space, & vertical cylindrical well filled with water is drilled (fig. 56).
The weak turbulence of the air over this channel masintains a constant
ebsolute humidity of C, grams per cubic centimeter at the chammel

mouth. Strictly isothermal conditions are assured. in the entire setup.

Since water vapor and air have moleculsr weights of 18 and 29,
respectively, the drier the air sbove the well, the lighter the more
hunid air inside the upper part of the well. For definite conditions in
the upper part of the well, the following gravitational diffusion convec-
tion may arise: The ligher vapors .entering the well from abdve may rise
in the drier air. We shall clarify these conditions and establish the ve-
locity of the process of the drying out of the channel water.

The diegram in figure 56 shows the dependence of the mean humidity
over g cross section in the well, on the level of the section:

¢ = c(z) (19.17)

Directly above the water level in the well the constant ("100 percent")
humidity co(e) prevails, determined by the temperature of the experi-
ment. For example, for the temperature 20° C, Cop = 1.73x1075 grams per

cubic centimeter. If the relative humidity ebove the mouth of the well
is 60 percent at 20° C, then Cy =f1.04><lO'5 gram per cubic centimeter.

For a barometric pressure of 760 millimeters of mercury and some
humidity C, the partiel pressures of the vapor p _ and of the air Py
are equal, respectively, by Clspeyron's egquation

RoT
P=-0 C; P, =/ % _ (19.18)

lBThis section was compiled from data obtained by V. B. Shein.
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P+ p, = 760 = ROT(-E + %) (19.19)
whence
dCy, By
= = - (19.20)

where Rqg 1s the gas constant, T the absolute tempersture, and u and

Yy, the moleculer weight of water and air, respectively. The density of
the mixture of air and vapor is equal to

=C + Cy (19.21)

Therefore, the concentration density coefficient (formuls (2.7)) is

ac
Bl=%x%p'=%x(%%+%%bxdcb)
_ 1 _ Py __o0.61 3
—p(l —u)— are cn”/g (19.22)

By enalogy with equation (5.15) and from figure 4 we find for the
dense walls of the well, impenetrable both for air and water, the value
of the convection parameter (Z-axis directed downward)

4
g8:R"  ac
e = —~5— X = 674 (18.23)

Therefore, the critical value of the cross-sectional mean of the vertical
concentration gradient is

-5 -3 -6
8C _ 7.4 x YD _ g7 4 5 18X0075X0.25X1.3Xx107° _ 5.07><4L:o
R

= 67. (19.284)
dz g(-B1)R* 1.3X10"3x981x0.6L&R*

where there has been set for air: D = 0.25-square centimeter per second,

= 0.0013 gram per cubic centimeter, and n = 18x10™° grem per centi-
meter per second.

The critical depth 2z, from the mouth to the water surface in the

well at which the criticael gradient of the concentration is Jjust barely
atteined, will therefore be
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Ca - C
rR* =0 1 _ 50706
20
(19.25)
Cq - C
4% -C 6
ZO = R '——-—5‘07 X 10 R
For our assumption we obtain -
£ (1.73 - 1.04)X10™° _ _4 0.69 ok
zg = R 5 =R” 5557 X 10 = 1.36XR" cm (19.286)

5.07X10"

The considerations that were adduced here by'analogy-aiﬁh thermal
convection are sulteble for those vertical distances that exceed the
well diameter: '

Zq = 2R
2R < 1.36 R* (19.27)
Hence, for the well radius
3 2 _ 3
R }m = 1.47 cm

(19.28)
R>21.14 cem

The critical distribution of the concentration i1s represented in figure
56 by the straight line AB. If in the process of drying omly the level
z1, but not the level =z, is attained, then by analogy with figure 35,

we are Justified , in expecting the mean cross-sectional concentration dls-
tribution, shown by the curved line AFF. The curved line represents, on

the averege, the critical gradient joining at the edges with the concen-

trations C; and Cg Dby the exponential transitions.

Both transitions are the same becsuse there are no losses of sub-
stance through the well walls, in contragt to the heat losseés shown in
figure 35. Mentally replacing these two. transitions by the double trans-
ition, we cbtain the curve AGF. '

The velocity of transfer of the vaporized fluid is practically de-
termined in its convectlve part by the diffusion resistance of the ex-
ponential transitions. This resistance may be evaluated by comsidering
the formuls of the end phenomena (12.1) as the resistance of a part of
the well of length 2R. The effect of convection on the process of evap-
oration 1s restricted only by a certain lowering of the fluld of the
active moisture deficit on the surface. This deficit assumes the value
represented by the segment . ’

TOTE
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Ch-C - )
BF = 2% (2 - z) (19.29)
20

Hence, the velocity of evaporation is equal to

ﬂRZpOdZ zZg - 2 1

= = ® D(Cq cl)( T + Zo) (19.30)

On the left of this expression the total flow of the vapor mass of the
veporizing water appears, having the constant fluid demsity pg. On the
right the same flow is divided into two diffusion components. The first
of these components represents the "overcoming of the diffusive resis-
tance" of the exponential transition (with further transfer of this flow
by convection); the second component represents the molecular diffusion
flow accampenying the convection and corresponds to the critical concen-
tration gradient o B

Ch-C

Lo 1 (19.31)
20

Dividing the equation (19.31) by the ares of cross section of the
well =RZ and separating the variables, we obtain, after integration,

az D(Co - C) )
A = == at
z2g + -z Po2Rzg
Zn + 2R - 2 D(Cq - Cq)
In S ———-—zg L > (19.32)
20 Z0P0
_D(Co-C1)
zg + 2R - z 2Rzop0
—z. "¢ /
0
D(Cp-Cq)
T Z2RZAp
z=2R+zg\l= e 070 (19.33)

where as initiel conditions there was set

Zz=2R when t =0 (19.34)
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The initial velocity of drying (for t = 0)
(dz) D(Co - Cy)
o}

% TRog (19.35) .

is found to be inversely proportional to the well radius.

The exponential dependence 6f z on t 1is approximately shown in
figure 57. At the instant +© = %3, when =z reaches the value z,, the
convection ceases and there remaing only molecular diffusion described
by the simplified equation : : :

T™M7%

2 . .
Repadz Co - C
o7~ _ RED 0”1 - (19.38)

dt -~ . Z

Dividing by the area xRZ, separatlng the variables, and integrating give
succesgsively -
D(CH - C-)
z dz S R at
Po
(19.37)

(t + tp) -

2D(Cq - Cp)
Po

2% =

The constant of integration t, ‘is chosen so that 2z is egqual to ZQ
for that value 1t which corresponds to this instant, according to the
equations

2z _ D(Co - C1)

In — = = —————— t
20 2Rzgpo  *
(19.38)
2p(CH - Cq)
2 0 ']
Zo = - po (tl + tz)
Eliminating t,, we obtain
2 2Rz R
OnZ
070 (19.39)

£o = tq = O 1y 20
2D(co - clS 2 1 DZCO - 01’5 2R
Thus . .

2Rz
0%0 i x._9 - in é] (19.40) .



4281

‘CA-24

NACA TM 1407 185

where the expression in brackets is positive under the assumed conditions.

The transition of the exponential law of drying to the parabolical
law proceeds at that level of water in the well which is determined by
the coordinate z = zq5- Substltution shows that the drying curve

z = z(t) does not suffer either a jump or a break here.

Thus the actual process of drying water out of wells represents two
interchanging processes (fig. 57); namely, an exponential as and a
parabolical bb. In the parabolical process the humidity distribution
(norw canstant in cross section) as a function of the depth of the water
level is expressed by the straight line AK (fig. 56).

Tt is possible that for the conditions
2R <z < z, (19.41)

in reality, the regime of convection will not be laminar but will be the
above-critical turbulent regime. This possibility is particulerly large
for small values of 2z that are very much less than Zzg. Before ob-

taining experimental data on the above-critical phencmena in gases, it
is difficult to say anything positive on this regime. In these computa-
tions it is essumed that the magnitude s in formula (12.1) is equal
to 2. '
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TAZ¥

TABLE I

£ g4 1(s) - a(t) - E(t) - Fplt)

A A A A _ Ae Ae Ae Ao

— =X 0 — ——— Y . s MY emvew —— =Y . —— . ——

e o = 0.1 e 0.3 o x 1 Y 0.3 = 0.1 Y 0
0 0 6.9282 7.6210 9.0087 13.890 2.0067 T7.6210 6.9282
2.0 16.0 6.56 7.10 8.17 11.94 7.35 6.04 5.38
2.2 23. 6.28 6.74 7.65 10.86 6.47 5.21 4.58
2.4 33.48 5.94 6.30 7.0% 9.50 5.34 4.15 3.56
2.8 45.70 5.67 5.90 6.37 7.99 4.02 2.89 2.32
2.8 8lL.47 5.16 5.23 5.36 5.83 2.22 1.19 .67
3.0 81.0 4.49 4,36 4.10 3.08 .04 ~-.86 -1.31
3.2 104. 3.70 3.32 2.57 -.8 -.87 ~3.41 -3.78
3.4 133.7 2.76 2.09 .76 -3.92 -5.85 -6.40 -6.68
3.8 167.9 1.62 .60 =1.42 -8.53 -9.66 -9.99 -10.15
3.8 208.6 .23 -1.17 -3.98 =13.80 -13.96 -14.01 ~-14.03
4.0 256.0 1.37 -3.20 -6.86 -19.66 -18.70 -18.43 -18.28
4.2 311.2 -3.22 -5.50 =10.07 -26.04 -23.79 -23.14 -22.82
4.4 347.8 -5.25 -8.01 -13.53 -32.85 -29.18 -28.12 -27.60
4.6 447.8 -7.23 -10.30 ~16.45 -37.98 -32.92 -31.47 -30.75
4.8 530.9 -9.18 -12.48 -19.10 -42,31 -35.90 -34.07 -33.15
5.0 8625.0 -10.61 -13.97 -20.69 -44.2 -36.8 -34.7 -~33.6
5.2 731.2 -11.71 -14.91 -21.3 -43.7 -35.5 =33.2 -32.0
5.4 850.3 -12.17 -14.99 -20.6 -40.4 -31.8 -29.4 -28.2
5.8 983.5 -12.10 -14.36 -18.9 -34.7 -26.2 -23.8 -22.6
5.8 | 1132.0 -11.47 -13.00 -16.1 ~26.8 -18.7 -16.4 -15.3
6.0 11296.0 -10.48 -11.15 -12.5 -17.4 =10.0 -7.96 -6.91
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TABLE IT
Ae 4
E=kR| = &
2.865 0 67.4
2.9 07| 70.7
3.0 .31 | 81.0
3.1 .62 92.4
3.2 1.02 | 104.9
3.3 1.59 | 118.6
3.4 2.43 | 133.6
3.5 3.78 | 150.0
3.8 6.27 | 168.0
3.7 12.5 | 187.4
3.8 58.4 208.5
3.8317 © 215.8
TABLE III
Number of | |KR| | -(xR)%| vy : Regime of
ints
fig. 8) Convection Temperatures
Free - Forced
1 4.611 | 452.1| O None -~ None Warmer upward
2 5.00 625.0 S
3 4.00 | 256.0| 5 | »Preseut Wermer upward and
4 3.00 81.0| 5
5 o} 0 5 None > Upward Constant along length
and over pipe cross
section
6 5.00 81.04 5 - Colder upward and
7 4.00 | -256.0} 2 Present None at walls
8 4.611 | -452.1 o]
9 5.00 -825.0{ -1 Downwaxrd Colder upwerd
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TABLE IV

[|xR| = 4.611; (kR)4 = -452.1; a = 0.179;
Vo - Arbitrary scale. ]

r | v |egmlel v | gmR?
R a Vo R a Vg
) 19.79 | 408 {0.520 | 0.943| -18
.043 119.51 | 404 .564 | -.84 | -82
.087 (18.98 | 392 .607 | -2.38 | -103
.130 |18.03 | 380 || .851L | -3.83 | -138
L1753 |16.82 | 344 .694 | -4.56 | -189
.217 {15.27 | 310 | .737 | -5.11 | -194
.260 |13.46 | 277 .781 | -5.27 | -212
.304 [11.48 | 225 .82¢ | -5.05 | -227
.347 | 9.39 | 178 .867 | -4.42 | -236
.384 | 7.70 | 129 .910 | -3.40 | -240
434 [ 5.02 | 78 .954 |-1.97 | -242
.477 | 2.92 | 29 .9976 | ~1.17 | -242

1.00 0 -242
TABLE V
r v BR28 v 2
z - geni o < &R 6
R Ym VVm Vm YV
(xr)* =: -825 (xR)% = +625
0 -14.8 | -336 |0.0124 | -188
.2 |-11.4 |-280 177 | -162
4 -3.52 | -78 .66 | -122
.6 3.36 | 108 |1.28 42
.8 4.80 | 174 |1.48 435
1.0 0 132 |0 1040
(kR)4 = -256 (¥R)% = +256
0 7.50 | 112 |0.88 -12.1
.25 5.75 84.0] .86 -9.1
.50 2.20 21.8 | 1.25 14.2
.75 -.64 | -50.0|1.32 23.7
.95 -.485 | =85.0 | =mmm=n | mmmmee-
1.00 0 -92.0 |0 55.8
(xr)% < -8 (xR)% = 481
o) 2.89 23.2 | 1.42 -1.45
.33 2.28 17.2 { 1.45 -1.71
.87 .945 2.5 |1.37 11.35
.933 2100 | -10.0 | ===m=n | mmm———-
1.00 o) -12.8 {0 25.1

T82¥
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TABLE VI
1 L4
Substance o, -B 3 v, A, Pr = = pc, gB

°c cm? [sec cal x cal g‘x’
° gec/cm O emd | 1/° cm®
Water o] -5x107° .lBXlO-S 0.00132 13.3 1.005 -2,050
10 6.5 13 -00136 9.49 1.000 3,600
20 18 10 .00140 7.06 .987 12,500
30 30 8.05 00144 5.51 -.994 25,200
40 38 6.59 .00148 4.37 -990 37,500
50 45 5.56 -00152 3.59 .987 51,100
60 51 4.79 .00156 3.00 .982 65,800
70 57 4.15 .00180 2.54 .979 82,300
80 62 3.66 .00164 2.20 974 106,000
90 68 3.26 .00168 1.92 .870 121,000
100 74 2.95 .00172 l.72 -865 144,000
Mercury 20 | 18x10™5 | 1.15x10"3 | 0.020 0.026 |0.45 3,400
Ethyl alcohol| 18 | 110x10-° | 15x10-3 0.00043 16 0.46 770,000
Glycerin 18 | sox10-5 | 8.5 0.0007 8,900 |0.73 60
Alr 20 ——2;'3 157x10-3 0.0000603 0.722 | 0.000282 100

TABLE VII. - STANDARD CONVECTIVE

CURVE FOR WATER

Temperature, Vertical
9, distance,
og 4
(%) z em™3
o o
4 -4,150
10 6,150
20 83,100
30 270,000
40 591,000
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TABLE VIIT
Part I
Temperature, | Power, |Gradient, | (kR)% | Nux Remarks
e, Q, A,
o¢ cal/sec | deg/em
1 21.9 0.012 0.103 90 | 116 | Model I, preliminery
diem., 0.98
2 28.6 .08 .97 108 | 280 | Upper set
3 31.1 .08 .83 105 | 295 | Center
4 33.5 .08 7 107 | 333 | Lower
5 27.5 .12 .95 99 | 432 | Upper Model. V,
6 30.5 .12 .85 . 104 | 455 | Center dlam., 0.526
7 32.5 .12 .82 110 | 480 | Lower
8 31.5 .27 .82 105 | 1030 | Upper
9 33.8 .27 .66 94 | 1300 | Center-
Mean 10412
10 26.4 .08L .087 103 | 495 | Model I, ser. ITI
11 22.0 122 | ememe -—- | 1420 | Model IV, dism., 3.8
Part IT _
Temperature, | Power, | Gradient, | (kR)%* | Nux Remarks
8, Q, A,
°¢ cal/sec | deg/cm
12 36.0 0.27 0.80 121 | 1100 | Lower set
13 42.5 .49 1.11 214 | 1440 | Upper
14 45.4 .49 1.02 217 | 1500 | Center
15 49.1 .49 1.30 308 | 1220 | Lower Mngl v, 0.526
16 48.1 .746 1.90 377 | 1300 | Upper am., O-
17 48.7 . 748 1.80 423 | 1300 | Center
18 54.8 . 746 2.26 620 | 1040 | Lower
19 21.1 0.38 0.15 181 {2410 |7
20 30.5 .65 .39 560 | 1550
21 39.8 1.05 1.02 2170 | 930
22 34.5 3.80 1.31 2260 | 2680
23 42.9 1.73 1.18 2640 | 1300 Model I, ser. IL,
24 37.7 3.80 1.62 3160 | 2130 | 2 gyam., 0.98
25 47.0 1.53 1.21 3200 | 1120
26 56.5 2.07 1.58 5400 | 1130
27 50.1 2.50 1.83 5500 | 1200
28 47.5 3.80 2.32 8300 | 1450
29 64.4 2.70 1.74 8700 | 1310 | |
30 - 29.2 0.170 0.097 133 | 1620
3L 29.8 .245 .152 217 | 1490
32 29.9 .435 .229 327 | 1760 Model I, ser. IIT
33 29.7 .331 .231 328 | 1320 o, 008
34 32.9 .550 .345 568 | 1470 ’
35 36.1 .6B0 .509 g56 | 1220
36 96.3 4.94 2.50 19,500 | 1540
Mean Nu¥*
1460480

"
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4281

CA-25 back

NACA TM 1407

195

TABLE IX
1 Pi 9 ry 81
1 1,085 _ 47gé915 121222985 -1,065
2 570 ..izgggz§§£ Ezéégzgég -3,990
3 3,990 310,279 517,651 -570
88 88
4 1,635 |- 2RBL) 28800 | g 035
5 7,085 | — 162i731 5,727,136 -1,635
44
6 4,560 | — 621,337 896,777 -4,560
44 44
- 10,206,561 | _ 13,737,022
7 3,874 T 561 3,874
_ 15,592,945 | _ 18,260,720
8 3,379 T T 15,755
5,382,745 7,642,112
- —2 -t
9 15,755 T T 3,379
10 2 P 809 d10 rlo -2 ) 809
TABLE X. - LOCATION OF THERMOCOUPLES
Number of thermocouples 1 2 3 4 5 6 7 8 g
Iatitude, deg 90 | 45| 45| 45| 45 0 0 0 0
Longitude, deg - 0] 90180 | 270 O] 45 80 | 135
Number of thermocouples 10 11 12 13 14 15 16 17 18
Latitude, deg 6] 0 0 0 }-45 | =45 | -45 | -45| =90
Longitude, deg 180 |225 | 270 | 315 O| 901180 | 270 | ===
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TABLE XI. ~ INVESTICATION OF CONVECTION IN SPHERICAL CAVITY
Number of Latitude Power rates
thermocouples
0.196 | 0.37 | 0.595| 1.09 | 1.92 | 3.00 | 4.14_| 6.5 3.00
: angle
200
A Coolex 9.5 3 3.5 3.5 6.25 9.5 8.5 . 8.25 6.85
1 +90° 15.75114.25{14.25 } 14.75 | 17.1 21 18.75 25.751 18.35
2 17.5 16.5 16.5 '} 17.5 19.5 23 20 27 20.85
3 s 4450 17 15.75115.75 1 16.88 | 19.25 | 22.5 19.5 26.881] 21.3
4 17.25 | 16 16 17 19.38 | 23.05 | 20.5 . 26.251 21.3
5 17.75 1 16.63 | 16.6 |17.5 |19.6 |22.65|20.75 | 26 20.85
6 18.5 17.5 17.5 18.75 | 21.37 | 25 22.75 30.5 22.35
7 18 17 - 17.17 §18.38 | 21..5 25.45 | 23 31 23.85
8 17.9 16.2 16.87 } 18 20.5 24.5 21.75 30.75 | 23.97
] Equator 18 16.83 | 16.75 | 18 20.5 24.25 | 21..65 29.1 23.72
10 18.3 |17 16.87 |18.13 { 21 24.75122.88 | 29.75 | 23.6
11 18.75 {17.38 | 17.25 |18.7 |21.25 [ 25.1 |2%3.5 | 29.75 | 22.85
12 18.88 {17.5 |17.75}118.9 |21.25|24.25 2%.5 29.25 | 22.47
13 18.75 | 17.6 17.75 | 18.9 21 24.5 23.12 29.5 22.8
14 19 18 18.25 119.75 | 23.25 | 27.5 | 26.5 34.75 1 26.1
15 -45° 18.5 {17.82 |18 19.682 | 23.25 | 27.5 | 27 35.6 | 27.72
16 18.8 17.85 {18.25 (19.75 | 23.75 | 28 27.75 36.26 | 27.47
17 19.25 | 18.25 {18.5 (19.9 {23.62 | 27.9 | 28 36 26.35
18 -90° 19.25 | 18.63 | 19.25 | 21.0 |26.12 | 32 32.5 | 44.25 ] 31.1
B Heater 23.25 [ 25.25 | 27.75 | 34.75 | 56.25 | 64.5 78 124.75 | 69.35
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’ Figure 2. - Computation of volumetric
Flgure 1. - Orlentation of velocity of convection.
axes of coordinates.

g¥ 2753
A5 _—
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[ 9 4 ol %/
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X ar 42 4s Z_Ilﬂlﬂ.fﬂi‘
Figure 3. - Scheme of solution ’1. -
of problem of gravitational Figure 4. - Dependence of convection
thermal convection. criterion on relative thermal con-

ductivity of surrounding mass.

—
r

| g

g
Figure 5. - Distribution of convection veloc-
ities v, temperatures 8, and heat flows over

diameter of vertical channel of round cross temperatures, and heat flows over

section. Heat conductivity of surrounding section of vertical chammel. Heat
mass is equal to that of the fluid. conductivity of surrounding mass is
equal to that of the fluid.
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Figure 6. - Isolines of equal velocities,
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Figure T. - Distribution of velocities and
temperatures over radius of vertical
channel of round cross section. Heat con-
ductivity of surrounding mass is small,
equal, or infinitely large in comparison
with heet conductivity of fluid.
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Figure 8. - Superposition of forced and free
thermal convectlion in vertical chammel of
round cross section. Distribution of veloc-
ities and temperaturese over chammel diameter
for different combinations of magnitude of
vexrtical temperature gradient and magnitude
of volumetric velocity of forced motiom of
fluid. Axial symmetry.
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i?'igure 9. - Isolines of equal damping expo-

nents in the plane of auxiliary coordi-
nates - equidistent stralght lines.
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Figure 10. - Isolines of equal vertical temperature
gradients In the plane of auxiliary coordinates;
two famllies of hyperbolas, referred to their
asymptotes.

Figure 12. = Position of axes of
coordinstes and components of
the temperature gredient for .
an inclined slit. Total width
of slit, ZR.
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Figure 11. - Isolines of closedness
of a channel in the plane of aux-
iliery coordinstes; transcendental

curve.
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Figure 13. - Temperature dependence
of the convection parsmeter of
water.
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"4 to switch of
galvanometer
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Figure 14. - Section of glass model for inves-
tigetion of thermel convection. Cross
section of the burette, the charge of
magnesia, the aluminum jacket, the arrange-
ment of the thermocouple jJunctions and the
lead wires.
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Figure 15. - Arrangement scheme of two pairs
of "transverse" thermocouples for determi-
nation of azimuth of diametral antisymmetry.
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Figure 16. - Btructural and -electrical scheme of matal model for lnvestigation of thermsl comvection: abed,
Dimenelions of the braes tube of the model A; e, fumnel; B, charge; 1 and 2, two stages of averaging
thermoccuples; t,, working theymometer in Dewar flank; t,, control thermometer in other Dewar; I,
asutomatic switch of gelvemometer I'; 0, nemtral lead; B, lignt source; M, photorecording apparatus.
L 4 1
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~121v 3
Figurs 17. -~ Beheme of comnscting In avbomatic N
gwitoh for low-voltage current source: 3, [ ° =
Blectromagnet of autcmatic swltehy 1, working
contact, comected in from cem disk of amall Figure 18, - Bcheme of commecting in automatic
synchronous motor; 2, block contact opened by - switeh for high-voltage ourrent source (hard
armature of electrommgnet at the moment of rectifier): F, Electromagnet of switeh; 1, 8
operation. working contect, comnected In from cam disk. H
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Figute 19. - Conatruction
of movabla heater coil
for thermal imvestigation
of prepared model: 1,
Glass tube; 2, copper
pulley; 3, high resis-
tance coll of heater.
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Figurs 20. - Comstructlonal scheme of model
and electrical scheme of thermal investi-
gation of modsl: A, Jacket of model; M,

II, movabls heater

coll; mmbers 1 and 8, stages of averaging

‘thermometers comeoted to bars of autcmatic

a'wits . Gralduated volitage corresponding to

7.15°C, 0.3 willivolte; T, self recording

charge of magnesia;

galvanometear.
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Figure 21. - Derivation
of heat belance in
commection with thormal
investigation of pre-
pared wodels: 1, Tube
of model; 2, movable
heeter coll moving with
velocity v; 8, cross-
gactional area of model
tube; dz, element of
modsl length.
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Figure 22. - Varistion of temperature in a
given section of model In thermal investi~
gation as a function of time (or coordinate).
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Flgure 23. - Varilation of logarith of
temperature in & given section as
a8 function of time (or coordinate).
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Figure 24. - Result of evialunting cemter photogreph of figure
I. For motion of heater upward and motion of heater down-
ward, the points satisfactorily reproduce the form of flgure
25. Temperature scale: 38 divisioms correspond to 4.5°C.
Numbers of time marks on axis are laid off of shscissas.
Zero 1s taken as instant of maximm temperature.



204

YNy —

lgNy —>

R
SRS

2

regime - horizontal band.

tg(GrPr) — -

_NACA TM 1407

3

IS o

. C =

g ///é//é//////ﬁ'///[//////////V//////I///I/I//A’l//I/lll.’:17’/’//#7///////!/#///’///)7/.
/ q v ‘v

L3
v

o

54

i
123

2%

74

2

B

SEESDRS

5

N B
ST NGNS 10D

20
27
¥

24583
57 P

Figure 26. - Spontaneous rotation of azimuth

of diemetral antisymmetry, recorded by two
pairs of "transverse" thermocouples, for
time interval of 26 minutes. Along axis
of coordinates the "reletive" transverse
differences of temperature in diameters

of model D.
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Figure 25. - Schematic comparison of laws of heat transfer by
free convection (table VIII). _
experimental points obtained on different models (aifferent
symbols): at laminar regime - vertical band; at above-critical

On small scale, heat transfer .

upward from fluild to f£luid - broken line I; from solid body

to unbounded fluid - curve II; from solid body to solid body
through fluid layer - curve III. =

Cn large scale, position of

AN
|

A

Figure 27." - Sketch of theoretical
distribution of velocities v,
temperatures 8, and heat flows g
in two sections of model, and
shape of streamlines (symmetry
pleane) for case of presence of
heat losses in walls of model gq'.
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Figure 28. - Assumed distribution of 7
velocities v, temperstures 9, and g 7 Z 7
transverse temperature differences Time
6,-6_ for model heated from below
for case of presence of heat losses Figure 29. - Linear dependence
through walls in leminar regime of of logarithm of steady temp-
thermal convection. Convection erature on time convective
ceases at helght z = 0. Above this rrocess takes to reach corres-
section heat transfer occurs only ponding thermocouple.
through modecular conduction accord-
ing to exponential law. Temperature
of surrounding medium ie teken as
zero temperature. In section zy,
velocity has value vp.
secC
wot o i
v
A
r J00t
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o
:2
Al 2001
-
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-
g
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i
© 1
. l | N Vi . ‘f 708 cm
¥/ 7 2 J Heater log
Time Figure 3l. - Result of hermonic analysis

of photographs of figure XI. The
linear dependence of (mean) phase angle
of & heat wave on logarithm of coordi-
nate of transverse thermocouple.

Figure 30. - Lineer dependence
of logerithm of transverse
steady temperature difference
on time for attaining convective
process.



Figure 32. "Natural" thermal
vibratione in & model in-~
clinsd a% an angle of 45°
to vertical, described by
center transverse thermom-
eter. Arrows Indicate
ingtants of comecting and
discommecting of heater
coil. Power, 3.0 calories
per second.

v

Figure 35. - Apparatus for investigation
of mean peripheral tewperature over en-
tire length of vertical model: 1, Stand;
2, piston; 3, reservolr with wmercury; 4,
hot botiom of liquid columm; 5, movable
tube of model; 6, temperature measuring
resistance coll; 7, water cooling; 8,
supply resaxrvolr; 9, bridge circult for
measuring temperatures.

Figure 34. - Bridge clrcult
for measuring temperatures:
6, Measuring reslstance coil;
9, branches of bridge; 10,
Inlfe switch for Indicating
temperaturs scale on photo-
graphs; 11, sutomatic device
for indicating zero line and
time warks on photographs.
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¥igure 35, - Distribution of mean peripheral
temparature over height of vertical medel.
lef't - sketeh of Qisplacement along vertiesl
‘of Lot .bottom and cold top of water columm.
Right - ewtommtic photorecord of temperature;
X, - scale- deflection 4® C; 1 ~ end of non-
‘steady ‘regixe after carmecting in heater; 2 -
‘tomperature of hot bottom; 3 - expopential law
of distribution of mesn peripheral tempersture
in fluid near hot bottom; 4 - oharacteristic
temperature gradispt in cemter part of columnj
5 ~ exponential lav of temperature distribu-
tion near cold top; 6 - temperature of cold
top; T - exponential law of change with time
of temparature of top efter slmultansous con-
necting of heater and water cooler. Zero line
is marked by hourly time merks.

4281

P ———
5 7
g 377}
Eh 3 N
P =z
3
F/{

Figure 36. - fketch of apparatus for lnvestiga-

tlon of temperature distrlibution by method of
variable-length columm: 1 - Vertioal model
tube; 2 - hot bottom; 3 - rubber packing; 4 -
baater coll; 5 - movable plston - ocold top of
Tluld column; & - Ilug for plle driver cable;
T - cold reservolr; 8 - fluld column where
convective motion takes place; 9 - two temper-
ature mespuring resistences forming two arms
of measuring bridge; 10 - knife switch of
scals deflsctian; 11 - automatic device for
marking time and zero 1ine,
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0.011 cul/sec
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e 4
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0.295 cal/sec

Figure 37. - Records of temperature differences by method of variable-length columm.

Figure 38. - Method of movable
plunger: Movable plungexr
on filsment; 2, resistance
thermometer coil; 3, hot
bottom of model.
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Figure 39. - Optical method of prismatic vessel: 8,

Point source of light; C, large objJectlve; A,
prismatic vessel in which thermal phenomenon is
produced; B, dlephragm with eperture a; O, trace
of undeflected image of light source; K¢, Xy, 93,
DE, and FB, arrengement of bands of spectrum on
diaphragm B for various processes In prismatic
vessel; a, b, and 4, various locations of aperture
a with respect to spectrum bands.
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Figure 40, - Path of ray in prism
with variable Index of refraction.
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Figure 42. - Optical method of verticel deflectioms:
8, Light source; C, large obJective; H, photo
objeotive; k, ground glass or graphic plate; F and
G, horizontal knife edges; A, glass tube of model;
D, priematic vessel; B, heater; E, cold reservolir.
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Figure 41. - Demonstretionsl veriant of optilcal
mothod of prismatic veasel: B8, Crater of arc;
C; large objectlive; A, glass prism; B, primmatic
veesel; Q, projection objective; D, dlaphragn
with aperture; P, reversing prism; Z, demonstra- I
tion pereen.

Flgure 43. - Optical lattice method: §, Light source;
A, model plus cbjective; B, lattice; Q, photo objective;
D, groupd glass or photographic plate, Path of & non-
deflocted ray end of a ray deflected by model.
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Warmer

Figure 44. - Convection in cylindrical horizontal channel
observed by lattice method. Vertlcal stralght line is
plumb line. Two jsoline systems: Crosswise systems of
mutually embracing curves and oval systems in cemter are
igsolines of equal horizontal gradient; other lines are
isolines of egual vertical gradient. T

Colder

(B)

Figure 45. - Convection in cylindrical horizontal chammel observed by lattice method:
A, Heating from right, cooling from left; wvertical line if plumb line. B, heating
from right down, cooling from left up. Two pairs of mutually embracing isolines

Isolines forming closed ovels

belong with lsolines of equal vertical gradlents.
in center belong with isolines of equal horlzontal gradients.
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Figure 46. ~ Computetion of diffractiom phencmena:
00, Optical axis of photographlc apparatus; P,
rods in plene of lattice; ¢, photographic plate;
1, approximate focal distence; d, distance between
rods of lattice; x, distance between bands on
photograph.
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Figure 47. - Model for investigation of convection in an
inclined slit by optical lattice method.
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Warmerj

A Y]

Colder

Figure 48. - Computation of sensltivity of optical lattice
method: &, Thickness of model; 1, dlstance from model —
to lattice; x, dlstance between lattlice rods. Position

of wave front of light wave.

ANk
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Figure 49. - Posltlon of axes
of coordinates for horizontal
channel.
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Figure 50. - A, B, C, and D, isolines of equal componernts. of temperature
gradient in horizontael chammel, theoretically computed, including
second approximation. Heating is from rlght.
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Figure 51l. - Model for investigation of thermal convection in
a spherical cavity: II, Heater; X, cooler; K, channel for
£111ing model with water; A and B, locatlon of extermal
thermocouples; dote indicate location of 18 interlor thermo-

couples.
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Figure 52. - Iocatlon and mumbering of interior
thermocouples 1n model for investigating thermal

convection in spherical cavity.
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Filgure 53. - 1 to 3 - Results of investigation of thermel convection
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Figure 53. - 4 to 6 - Results of investigation of thermal convection
in spherical cavity.
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Figure 53. - T to 9 - Results of investigation of ‘thermal convection
in a spherical cavity. ILast graph refers to case of axis of
symetry of model inclined to vertical by 20° angle.
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Figure 54. - Model for investigeting convectlon in horizontal

chamel of round cross section by optical lattice method.

Figure 55. ~ Assumed distribution of convective flows over
section of inclined round pipe.
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Figure 56. - Verticel well filled with

evaporating water and distribution of
cross~-sectional mean humidlty.

Line AEF corresponde to convective
process, Line AB corresponds to
critical gradient of humidity; %,
ceritical depth. ILine AKX corresponds
to purely molecular diffusion of
water wvapor.
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Figure 57. - Theoretical curve of water

eveporation in vertical well. The ex-
ponential curve aa corresponds to con-
vection regime. Parabola bb corresponds
only to the molecular diffusion. On
attaining critical depth, the_exponential
drying law goes over into the parabollc.
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Figure I. - Examples of automstic photo recordings in thermally investigated models.

Upper record - 0.3 millivolt graduetion curve (corresponds to 7.15°C). Lower record
- datum temperature of Dewar flask. The switching galvanometer cycle (time marks)
82.5 seconds. Upper photograph A - velocity of heater motion is too small, the curves
are aslmost symmetrical. Center photograph B - velocity of heater motion is the most
advantageous, photograph is suiteble for measurements. ILower photograph C - velocity
of motion 1s large, increase in temperature is almost independent of velocity of
heater motion. Graduation record is not merked on lower photograph. On all photo-
graphs only initiel or middle parts of entire length of record are given.
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Flgure II. - Thermal convection in pipe of round cross section observed with aid of
light-scattering particles. Below - enameled wire of high-resistance heater. Axiasl-
symuetrical phenomenon developing inside heater (aelong periphery fluid rises , along
the axis fluid descends) spontaneously changes into diametrally entisymmetrical
phenomenon developing over heater (on right fiuid rises, on left fluld descends).
Diameter of tube, 3.8/4.0 centimeters {model IV, table 8).

Figure III. - Form of streamlines photpgraphed by means of light-scettering particles
(upper part, figure II). Tube without heat insulation. -Above - face of cold top.
Right - fluid rises. Left - fluid descends. T ST T : -
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Figure IV. - Nonstationary regime of laminsr thermel
convection, determined by method of temperature record-
ing with aid of program switch in vertical model.
Maximm power, 0.54 calorie per second. Duration for
each power stage, 3 hours. Upper line-- record of lower

set of thermocouples.

Figure V . - Nonstationary regime of brass rod introduced
into model in place of fluld. Sharp difference in thermal
phenomena in solid rod as compared with phenomens in fiuid

(fig. IV) is noted.
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(3)

Vertical gaps are

Figure VI. -~ Bvaluation of figure V by means of accelerated record.
0.092, 0.186, 0.304, and 0.42 calorie

A - corresponds ‘to powers:

hour merks of time. d
B - ¢orresponds to powers: .0.028, 0.056, 0.09, and 0.1l3 calorie per second.

per gecond.

.
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Figure VII. - Record of starting period in verticael model. Temperature of Dewar 13.29C.
Duration of cycle of switching, 82.5 seconds. Record A - 0.48 watt; B - 0.50 watt.
First occurrence of "matural" vibrations is noted.
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Figure VIII. - Nomstationary
regime of themal convection in
vertical model: Reaching of
convective thermal process in
turn to succeeding stages of
averaging thermocouples.

Figures IX. - Photorecord of temperature of lower
averaging thermocouple-upper curve, and two
transverse thermocouples; lower and upper curves
below zero line. Note elmost instantenecus reaction
of transverse thermocouples, characterizing intensity
of process of heat transfer, in comparison with
smooth reaction of averaging thermocouples, character-
izing result of process of heat transfer by convection.
The model axis inclined 45° to vertical.
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Figure X. - Photorecord of three transverse thermocouples in nonstationary regime.
Arrows indicate instants of switching heater on end off. Duration of cycle of
switching of galvanometer (distence between time marks) i1s equal to 7.5x4 = 30
seconds. Model axis is inclined 45° to vertical.

Figure XI. - Part of record by transverse thermocouples ot forced thermel vibrations in
model inclined 45° to vertical. Period of forced vibrations, 6 minutes. Switching
cycle of gelvenometer equel to 5x4 = 20 seconds; power from left to right, 0.174, O.T1,
end 1.58 calorie per second; depth of moduletion in lowering of 20 percent in power.
Shown are disturbances caused by natural vibrations (at large powers).
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Figure XII. ~ Forced thermal vibretions in model inclined at 45° angle. Cycle of
galvanometer switching, 7.4x4 = 30 seconds; powers from left to right, 0.71 and
1.58 calorie per second; depth of modulation In lowering of 10 percent in power.
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Figure XTII. - Thermal waves of convection along model inclined 45° to vertical,
recorded by three transverse thermocouples. Center of record. Duration of cycle
of galvenometer switching, 7.5x4 = 30 seconds. Period 6 minutes. Arrows mark
instants of switching heater on and off.
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Figure XIV. -Record of temperature by method of movable plunger: 1 - Instent of start
of plunger from hot bottom; 2 - upper face of plunger enters measuring coll; 3 -
lower face of plunger lssues from measuring coil; 4 - dlscomnecting of heater.
line 1s marked with hour marks of time. Model vertical.

Zero

Figure XV. - Record by meny thermocouples of temperature
change in displacement method. Double photo reproduction
« of motion of displaced rod upward aend downward. Note
good agreement for both kinds of motion. Model is

vertical.
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Figure XVIA. - Record by many thermocouples of changes in temperature by?lisplacemenz
method, double photo reproductions. Heabing power, 0.05 calorie per second. Model
vertical. Velocity of photographic plate, 11.8 millimeters per hour. Velocity of

rod, 11l.8 millimeters per hour.

Figure XVIB. - Same

conditions as figure XVIA. Velo

Figure XVIC. - Same condlitions as figure XVIA. Velocity of rod one-eighth as lsrge.

Agreement of curves in motion of rod upwerd and downward 1s better the slower the motion.

182%
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Figure XVII. - Disgplacement method. Record for different heating powers. A - 0.014
calorie per second; B - 0.056 calorle per second; C - 0.080 calorie per second.
Note exponential varistion of temperature near face of displaced rod and increase in
instebility for certein lengths of £luld column. Model is vertical.



228

NACA TM 1407

(a)

(D)

Figure XVIII. - Conmvection in vertical slit investigated by optical lattlice method.

lattice: Rods of dlameter, 1.3 millimeters; distance, 1.7 millimeters; gap, 3
millimeters between axes. Center of 'photograph is vertical plumb liné. A - heat-
ing power, 18 watts; B - 24 watts; C ~ 35 watts; D - 58 watts; E - 72 watts; and

F - 87 watts. Effect of diffraction observed on photographs D, E, and F from the
left upwerd: bands are blurred; on photogreph E same is observed on right downward.
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Figure XIX. - Convection in inclined slit investigated by lattice method. Ietters C,
H, and U denote cold, hot, and upper part of model. Power, 87 watts. Fhotogreph A -
inclination 15° to vertical, B - 35  to vertical. Note apparent curving of plumb
line because photo objective was focused on central plane of model; the plumb line:
being closer to objective. ObJective in strongly deflected rays forming image of
leteral parts of model "saw" plumb line to right of central plane of model; in non-
deflected central rays, to left of central plane of model. '

B . L

Figure XX. - Convection in horizontal sllt investigated by lattice method. ILetters
C, H, U, and L mark cold, hot, upper, and lower parts of model. Heating power, 64
watts. Iattice rods horizontal. Vertical plumb line is seen. Bands indicate
presence of convection (ILaplecien of temperatures not zero). Wave-like form of
bands indicates cellular structure of convectlve flow; lowering of bands corres-
ponding to downwerd flow, ralsing to upward flow.
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Figure XXI. - .Part of five day photorecording of temperature distribution along model
rotating about horizontal axis. Rotation cycle, 24 hours. Time increases from right
to left. Iowerings of record correspond to positions "heater below," comvective
motion taking place. Risings of record correspond to "heater on top," hest transfer
by molecular conduction. Temperature of aluminum Jacket 1s the zero ‘temperature.

Figire XXII. - Photorecord of tempetature distribution along rotating model {ome
rotation per 24 hr). Arrow indicates direction of rotation in arrangement where
heater 1s below. Convection produces equidistant-photorecords of Temperatures of
equidistant thermocouples. Temperature of hot thermocouple is taken as zZero curve
(circular record). Dotted peripheral record correspdnds t¢ temperature of aluminum
Jacket. Note unsteady initial period at start of recording. Heating power is
epproximaetely one-half to one-third as large as in preceding record.

182%



L YASHR

NACA TM 1407 231

Figure XXIII. - Photorecord similar to preceding record. Heating
powver 1 1/2 times smaller than on last recoxrd.

Figure XXIV. - Double reproduction of photographs XXiI &and XXIII. Both photorecords
coincide in convective part.
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Figure XXV. - Photorecord of temperature distribution along a rotating model. Velocity
of rotation once per 24 hours. Direction of rotation indicated by arrow. Temperature
of coldest thermocouple is zero (arc of .circle). Temperature of equidistant even aver-
aging thermocouples is recorded upward. Temperature of Jacket is recorded below. Above -
critlical reglme of thermal convection arises for almost vertical arrangement of model.
Note remains of unsteady starting regime et start of recard. Heating power 1is moderate.

Figure XXVI. - Bame as on preceding figure, considerable heatinérrower.
Bensitivity of galvanometer reduced. Jecket temperature is recorded
below (this record does not appear on photo b)., Temperature of datum

(Dewar) recorded lower.
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Figure XXVII. - Same as on preceding figure. BSemnsitivity
increased. FPhotograph shows clearly character of
unsteadiness in above-critical regime.
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